• Title/Summary/Keyword: vector-borne disease

Search Result 43, Processing Time 0.022 seconds

Comparison of canine vector-borne diseases in rural dogs based on the prevention status

  • Yi, Seung-Won;Kim, Eunju;Oh, Sang-Ik;Oh, Seok Il;Kim, Jong Seok;Ha, Ji-Hong;Lee, Bugeun;Yoo, Jae Gyu;Do, Yoon Jung
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.3
    • /
    • pp.145-152
    • /
    • 2019
  • Canine vector-borne diseases (CVBDs) are transmitted by different groups of hematophagous arthropod vectors that are distributed worldwide and can cause significant health problems for dogs. The aim of this study was to investigate and compare the prevalence of selected CVBD pathogens in rural outdoor dogs based on prevention status. Between June 2017 and February 2019, blood samples were collected from 343 clinically healthy rural dogs composing two different groups: systematically managed dogs (SMD; n=92) and personally managed dogs (PMD; n=251). Vaccination and preventive medications were applied strictly following the programmed schedule for the SMD group; in contrast, in the PMD group, they were applied only when requested by the dog owners. Serological and molecular assessments showed that significantly more dogs in the PMD group were infected with B. gibsoni (P<0.001) and D. immitis (P=0.001) than those in the SMD group. These findings suggest that the regular use of preventive medications and environmental controlling efforts contribute to reducing the prevalence of CVBD pathogen infections. In addition, dogs infected with certain kinds of CVBD pathogens could remain asymptomatic, suggesting that continuous monitoring and periodic preventive treatment should be conducted even for clinically healthy dogs.

Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future

  • Rasit Dinc
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.6
    • /
    • pp.379-391
    • /
    • 2022
  • Leishmaniasis is a serious parasitic disease caused by Leishmania spp. transmitted through sandfly bites. This disease is a major public health concern worldwide. It can occur in 3 different clinical forms: cutaneous, mucocutaneous, and visceral leishmaniasis (CL, MCL, and VL, respectively), caused by different Leishmania spp. Currently, licensed vaccines are unavailable for the treatment of human leishmaniasis. The treatment and prevention of this disease rely mainly on chemotherapeutics, which are highly toxic and have an increasing resistance problem. The development of a safe, effective, and affordable vaccine for all forms of vector-borne disease is urgently needed to block transmission of the parasite between the host and vector. Immunological mechanisms in the pathogenesis of leishmaniasis are complex. IL-12-driven Th1-type immune response plays a crucial role in host protection. The essential purpose of vaccination is to establish a protective immune response. To date, numerous vaccine studies have been conducted using live/attenuated/killed parasites, fractionated parasites, subunits, recombinant or DNA technology, delivery systems, and chimeric peptides. Most of these studies were limited to animals. In addition, standardization has not been achieved in these studies due to the differences in the virulence dynamics of the Leishmania spp. and the feasibility of the adjuvants. More studies are needed to develop a safe and effective vaccine, which is the most promising approach against Leishmania infection.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

MODELLING AFRICAN TRYPANOSOMIASIS IN HUMAN WITH OPTIMAL CONTROL AND COST-EFFECTIVENESS ANALYSIS

  • GERVAS, HAMENYIMANA EMANUEL;HUGO, ALFRED K.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.895-918
    • /
    • 2021
  • Human African Trypanosomiasis (HAT) also known as sleeping sickness, is a neglected tropical vector borne disease caused by trypanosome protozoa transmitted by bites of infected tsetse fly. The basic reproduction number, R0 derived using the next generation matrix method which shows that the disease persists in the population if the value of R0 > 1. The numerical simulations of optimal control model carried out to determine the control strategy that can combat HAT under the minimum cost. The results indicate that, the use of both education campaign, treatment and insecticides are more efficient and effective to eliminate HAT in African community but too costly. Furthermore, the cost-effectiveness of the control measures (education campaign, treatment and insecticides) were determined using incremental cost-effectiveness ratio (ICER) approach and the results show that, the use of education and treatment of infected people as the best cost effective strategy compared to other strategies.

Development of inactivated Akabane and bovine ephemeral fever vaccine for cattle

  • Yang, Dong-Kun;Kim, Ha-Hyun;Jo, Hyun-Ye;Choi, Sung-Suk;Cho, In-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.4
    • /
    • pp.227-232
    • /
    • 2015
  • Akabane and bovine ephemeral fever (BEF) viruses cause vector-borne diseases. In this study, inactivated Akabane virus (AKAV)+Bovine ephemeral fever virus (BEFV) vaccines with or without recombinant vibrio flagellin (revibFlaB) protein were expressed in a baculovirus expression system to measure their safety and immunogenicity. Blood was collected from mice, guinea pigs, sows, and cattle that had been inoculated with the vaccine twice. Inactivated AKAV+BEFV vaccine induced high virus neutralizing antibody (VNA) titer against AKAV and BEFV in mice and guinea pigs. VNA titers against AKAV were higher in mice and guinea pigs immunized with the inactivated AKAV+BEFV vaccine than in animals inoculated with vaccine containing revibFlaB protein. Inactivated AKAV+BEFV vaccine elicited slightly higher VNA titers against AKAV and BEFV than the live AKAV and live BEFV vaccines in mice and guinea pigs. In addition, the inactivated AKAV+BEFV vaccine was safe, and induced high VNA titers, ranging from 1 : 64 to 1 : 512, against both AKAV and BEFV in sows and cattle. Moreover, there were no side effects observed in any treated animals. These results indicate that the inactivated AKAV+BEFV vaccine could be used in cattle with high immunogenicity and good safety.

Serological Detection of Borrelia burgdorferi among Horses in Korea

  • Lee, Seung-Hun;Yun, Sun-Hee;Choi, Eunsang;Park, Yong-Soo;Lee, Sang-Eun;Cho, Gil-Jae;Kwon, Oh-Deog;Kwak, Dongmi
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.97-101
    • /
    • 2016
  • Lyme disease is a tick-borne zoonotic infectious disease caused by Borrelia burgdorferi. The present study assessed the infection status of B. burgdorferi among horses reared in Korea using ELISA and PCR. Between 2009 and 2013, blood samples were collected from 727 horses throughout Korea. Data for each animal including age, gender, breed, and region of sample collection were used for epidemiological analysis. Overall, 38 (5.2%; true prevalence: 5.5%) of 727 horses were seropositive by ELISA. There were statistically significant differences according to breed and region (P<0.001) whose differences might be attributed to the ecology of vector ticks and climate conditions. Using 2 nested PCR, none of the samples tested positive for B. burgdorferi. Thus, a positive ELISA result can indicate only that the tested horse was previously exposed to B. burgdorferi, with no certainty over the time of exposure. Since global warming is likely to increase the abundance of ticks in Korea, continuous monitoring of tick-borne diseases in Korean horses is needed.

Spatio-Temporal Incidence Modeling and Prediction of the Vector-Borne Disease Using an Ecological Model and Deep Neural Network for Climate Change Adaption (기후 변화 적응을 위한 벡터매개질병의 생태 모델 및 심층 인공 신경망 기반 공간-시간적 발병 모델링 및 예측)

  • Kim, SangYoun;Nam, KiJeon;Heo, SungKu;Lee, SunJung;Choi, JiHun;Park, JunKyu;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.197-208
    • /
    • 2020
  • This study was carried out to analyze spatial and temporal incidence characteristics of scrub typhus and predict the future incidence of scrub typhus since the incidences of scrub typhus have been rapidly increased among vector-borne diseases. A maximum entropy (MaxEnt) ecological model was implemented to predict spatial distribution and incidence rate of scrub typhus using spatial data sets on environmental and social variables. Additionally, relationships between the incidence of scrub typhus and critical spatial data were analyzed. Elevation and temperature were analyzed as dominant spatial factors which influenced the growth environment of Leptotrombidium scutellare (L. scutellare) which is the primary vector of scrub typhus. A temporal number of diseases by scrub typhus was predicted by a deep neural network (DNN). The model considered the time-lagged effect of scrub typhus. The DNN-based prediction model showed that temperature, precipitation, and humidity in summer had significant influence factors on the activity of L. scutellare and the number of diseases at fall. Moreover, the DNN-based prediction model had superior performance compared to a conventional statistical prediction model. Finally, the spatial and temporal models were used under climate change scenario. The future characteristics of scrub typhus showed that the maximum incidence rate would increase by 8%, areas of the high potential of incidence rate would increase by 9%, and disease occurrence duration would expand by 2 months. The results would contribute to the disease management and prediction for the health of residents in terms of public health.

The Climate Change and Zoonosis (Zoonotic Disease Prevention and Control) (기후변화와 인수공통전염병 관리)

  • Jung, Suk-Chan
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.228-239
    • /
    • 2009
  • The observations on climate change show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. The effects of climate change are likely to include more variable weather, heat waves, increased mean temperature, rains, flooding and droughts. The threat of climate change and global warming on human and animal health is now recognized as a global issue. This presentation is described an overview of the latest scientific knowledge on the impact of climate change on zoonotic diseases. Climate strongly affects agriculture and livestock production and influences animal diseases, vectors and pathogens, and their habitat. Global warming are likely to change the temporal and geographical distribution of infectious diseases, including those that are vector-borne such as West Nile fever, Rift Valley fever, Japanese encephalitis, bluetongue, malaria and visceral leishmaniasis, and other diarrheal diseases. The distribution and prevalence of vector-borne diseases may be the most significant effect of climate change. The impact of climate change on the emergence and re-emergence of animal diseases has been confirmed by a majority of countries. Emerging zoonotic diseases are increasingly recognized as a global and regional issue with potential serious human health and economic impacts and their current upward trends are likely to continue. Coordinated international responses are therefore essential across veterinary and human health sectors, regions and countries to control and prevent emerging zoonoses. A new early warning and alert systems is developing and introducing for enhancing surveillance and response to zoonotic diseases. And international networks that include public health, research, medical and veterinary laboratories working with zoonotic pathogens should be established and strengthened. Facing this challenging future, the long-term strategies for zoonotic diseases that may be affected by climate change is need for better prevention and control measures in susceptible livestock, wildlife and vectors in Korea. In conclusion, strengthening global, regional and national early warning systems is extremely important, as are coordinated research programmes and subsequent prevention and control measures, and need for the global surveillance network essential for early detection of zoonotic diseases.

  • PDF

The Larval Trombiculid Mites of Korea (한국산 Trombiculid mites에 관한 연구)

  • 정희영
    • The Korean Journal of Zoology
    • /
    • v.2 no.1
    • /
    • pp.17-28
    • /
    • 1959
  • In Korea ,little attention was paid to chiggers until 1950 so only to reports on four species of chiggers were pulished before Korean War. Since 1950 (beginning of Korean War), a marked progress in the study of chiggers has been made in connection with investigations of Epidemic hemorrhagic fever occurring among the United Nations troops which was suspected as a chigger-borne infectious disease and the first report of tsutsugamushi disease in Korea called natives attention to chiggers as the vector mites of this newly known disease in Korea. This paper is mostly based on specimens of author's collections from 3269 Rodentia Insectivora, 9 Chiroptera, 24 Aves , 35 Amphibia and 3 Reptilia during the time from December 1955 to December 1956 but four species were introduced here from works of others . There are reported here five species of chiggers previously known only out of Korea and a new species also. This new species was collected by author but Lipovsky informed his colleague had collected the same one in Korea and they would publish it as new one in near future. This is the reason of describing the new species without specific name . Of course, this paper is incomplete in view of the geographic distribution, seosonal change and host relation etc, but will serve as a brief summary of the chiggers fauna of Korea up to the present. This species described here are as follows : Gahrliepia brennani var. ventralis Neoschongastia posekanyi Euschongastia kigtajimai Euschongastia miyagawai Euschongastia koreaensis Trombicula nagayoi Trombicula japonica Trombicula pomeranzevi Trombicula mitamurai Trombicula tamiyai Trombicula palpalis Trombicula orientalis Trombicula pallida Trombicula scutellaris Trobmicula miotis Trombicula hiranumai Trombicula sp. Trombicula hiranumai Trombicula sp. Trombicula subintermedius Shunsennia tarsalis . Euschongastia ikaoensis . Trombicula koomori Trombicul subakanushi

  • PDF

Profiling Bartonella infection and its associated risk factors in shelter cats in Malaysia

  • Nurul Najwa Ainaa Alias;Sharina Omar;Nur Indah Ahmad;Malaika Watanabe;Sun Tee Tay;Nor Azlina Aziz;Farina Mustaffa-Kamal
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.38.1-38.12
    • /
    • 2023
  • Background: Poor disease management and irregular vector control could predispose sheltered animals to disease such as feline Bartonella infection, a vector-borne zoonotic disease primarily caused by Bartonella henselae. Objectives: This study investigated the status of Bartonella infection in cats from eight (n = 8) shelters by molecular and serological approaches, profiling the CD4:CD8 ratio and the risk factors associated with Bartonella infection in shelter cats. Methods: Bartonella deoxyribonucleic acid (DNA) was detected through polymerase chain reaction (PCR) targeting 16S-23S rRNA internal transcribed spacer gene, followed by DNA sequencing. Bartonella IgM and IgG antibody titre, CD4 and CD8 profiles were detected using indirect immunofluorescence assay and flow cytometric analysis, respectively. Results: B. henselae was detected through PCR and sequencing in 1.0% (1/101) oral swab and 2.0% (1/50) cat fleas, while another 3/50 cat fleas carried B. clarridgeiae. Only 18/101 cats were seronegative against B. henselae, whereas 30.7% (31/101) cats were positive for both IgM and IgG, 8% (18/101) cats had IgM, and 33.7% (34/101) cats had IgG antibody only. None of the eight shelters sampled had Bartonella antibody-free cats. Although abnormal CD4:CD8 ratio was observed in 48/83 seropositive cats, flea infestation was the only significant risk factor observed in this study. Conclusions: The present study provides the first comparison on the Bartonella spp. antigen, antibody status and CD4:CD8 ratio among shelter cats. The high B. henselae seropositivity among shelter cats presumably due to significant flea infestation triggers an alarm of whether the infection could go undetectable and its potential transmission to humans.