• Title/Summary/Keyword: vector diagnosis method

Search Result 124, Processing Time 0.026 seconds

Study on Distortion Ratio Calculation of Park's Vector Pattern for Diagnosis of Stator Winding Fault of Induction Motor (유도전동기의 고정자 권선고장 진단을 위한 팍스벡터 패턴의 왜곡률 연산에 대한 연구)

  • Yang, Chul-Oh;Park, Kyu-Nam;Song, Myung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.643-649
    • /
    • 2012
  • The diagnosis technique of stator winding faults based on Motor Current Signature Analysis(MCSA) was suggested. Park's vector pattern, the circle that is drawn by d-q transformed currents($i_d$, $i_q$), is widely used for stator winding faults detection. The current Distortion Ratio(DR), defined by the ratio of max axis and min axis of ellipse of Park's vector's pattern, was more simple and powerful method than the Park's vector pattern. In this study, a calculation method of distortion ratio of Park's vector pattern was suggested for auto diagnosis of stator winding short fault and usefulness of suggested calculation method of distortion ratio was verified through simulation using LabVIEW program.

An Application of Support Vector Machines for Fault Diagnosis

  • Hai Pham Minh;Phuong Tu Minh
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.371-375
    • /
    • 2004
  • Fault diagnosis is one of the most studied problems in process engineering. Recently, great research interest has been devoted to approaches that use classification methods to detect faults. This paper presents an application of a newly developed classification method - support vector machines - for fault diagnosis in an industrial case. A real set of operation data of a motor pump was used to train and test the support vector machines. The experiment results show that the support vector machines give higher correct detection rate of faults in comparison to rule-based diagnostics. In addition, the studied method can work with fewer training instances, what is important for online diagnostics.

  • PDF

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

Fault Diagnosis of Rotating Machinery Using Multi-class Support Vector Machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • Hwang, Won-Woo;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1233-1240
    • /
    • 2004
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the nitration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

Fault diagnosis of rotating machinery using multi-class support vector machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • 황원우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.537-543
    • /
    • 2003
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the vibration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

  • PDF

Auto-Diagnosis for Stator Winding Faults Using Distortion Ratio of Park's Vector Pattern (Park's 벡터 패턴의 왜곡률을 이용한 고정자 권선 고장 자동진단)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Yang, Chul-Oh
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.160-163
    • /
    • 2008
  • In this paper, an auto-diagnosis method of the stator winding fault for small induction motor is suggested. 3-phase stator currents are sampled, filtered, and transformed with Park's vector transformation. After then Park's vector patterns are obtained. To detect the stator winding fault automatically, a distortion ratio is newly defined and compared with the one of healthy motor, and the threshold levels of distortion ratio are suggested. The 2-turn, 4-turn, 8-turn winding fault are tested with no load, 25%, 50%, 75%, and 100% rated load. The distortion ratio of the Park's vector patterns are increased as the increase of the faulted turns, but are same as the increase of the load.

Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines (SVMs 을 이용한 유도전동기 지능 결항 진단)

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

The Use of Support Vector Machines for Fault Diagnosis of Induction Motors

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.46-53
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine (SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel (KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

Condition Monitoring Of Rotating Machine With Mass Unbalance Using Hidden Markov Model (은닉 마르코프 모델을 이용한 질량 편심이 있는 회전기기의 상태진단)

  • Ko, Jungmin;Choi, Chankyu;Kang, To;Han, Soonwoo;Park, Jinho;Yoo, Honghee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.833-834
    • /
    • 2014
  • In recent years, a pattern recognition method has been widely used by researchers for fault diagnoses of mechanical systems. A pattern recognition method determines the soundness of a mechanical system by detecting variations in the system's vibration characteristics. Hidden Markov model has recently been used as pattern recognition methods in various fields. In this study, a HMM method for the fault diagnosis of a mechanical system is introduced, and a rotating machine with mass unbalance is selected for fault diagnosis. Moreover, a diagnosis procedure to identity the size of a defect is proposed in this study.

  • PDF

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.