• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.041 seconds

GPU-based Sparse Matrix-Vector Multiplication Schemes for Random Walk with Restart: A Performance Study (랜덤워크 기법을 위한 GPU 기반 희소행렬 벡터 곱셈 방안에 대한 성능 평가)

  • Yu, Jae-Seo;Bae, Hong-Kyun;Kang, Seokwon;Yu, Yongseung;Park, Yongjun;Kim, Sang-Wook
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.96-97
    • /
    • 2020
  • 랜덤워크 기반 노드 랭킹 방식 중 하나인 RWR(Random Walk with Restart) 기법은 희소행렬 벡터 곱셈 연산과 벡터 간의 합 연산을 반복적으로 수행하며, RWR 의 수행 시간은 희소행렬 벡터 곱셈 연산 방법에 큰 영향을 받는다. 본 논문에서는 CSR5(Compressed Sparse Row 5) 기반 희소행렬 벡터 곱셈 방식과 CSR-vector 기반 희소행렬 곱셈 방식을 채택한 GPU 기반 RWR 기법 간의 비교 실험을 수행한다. 실험을 통해 데이터 셋의 특징에 따른 RWR 의 성능 차이를 분석하고, 적합한 희소행렬 벡터 곱셈 방안 선택에 관한 가이드라인을 제안한다.

Selective Encryption Algorithm for Vector Map using Geometric Objects in Frequency Domain

  • Pham, Ngoc-Giao;Kwon, Ki-Ryong;Lee, Suk-Hwan;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1312-1320
    • /
    • 2017
  • Recently, vector map data is developed and used in many domains widely. In the most cases, vector map data contains confidential information which must be kept away from unauthorized users. Moreover, the production process of vector maps is considerably complex and consumes a lot of money and human resources. Therefore, the secured storage and transmission are necessary to prevent the illegal copying and distribution from hacker. This paper presents a selective encryption algorithm using geometric objects in frequency domain for vector map data. In the proposed algorithm, polyline and polygon data in vector map is the target of the selective encryption process. Experimental results verified that proposed algorithm is effectively and adaptive the requirements of security.

Fast Space Vector PWM Modulation of Multi-Level Inverter Without NTV Identification (NTV 식별과정 없는 멀티레벨 인버터의 신속한 공간벡터 PWM 변조 기법)

  • Jin, Sun-Ho;Oh, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.299-305
    • /
    • 2006
  • In this paper, we suggest a new space vector PWM modulation method with very short processing time which does not need identification of nearest three vectors(NTV) and duty ratio for each vector. The suggested PWM method makes mean value of phase voltage to be same as reference during every modulation period by use of a triangle in small hexagon on multi-level vector space. This paper described the suggested modulation method can be successfully applied to the space vector modulation use of multi-level inverter by computer simulations and experiments.

A Study on Montion Vector Smoothing for Reliability Improvement (움직임 벡터의 신뢰성 향상을 위한 스무딩 방법에 관한 연구)

  • 김진태;김기현;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.108-116
    • /
    • 1994
  • In this paper, we propose a new motion vector smoothing scheme which has high reliability and coding efficiency of motion vectors. In motion vector filed, groupings are made using angle and magnitude of the motion vectors. In each group, the unreliable motion vectors are corrected by the motion vector smoothing. In 3$\times$3 window, motion vector of the current block is made to group, and the motion vector smoothing is performed only in that group. Result of computer simulation shows much improvement of the reliability of motion vectors. Moreover, coding bits of the motion vector are diminished from 0.967 to 6.773 bits per block.

  • PDF

Face Detection Using Support Vector Domain Description in Color Images (컬러 영상에서 Support Vector Domain Description을 이용한 얼굴 검출)

  • Seo Jin;Ko Hanseok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • In this paper, we present a face detection system using the Support Vector Domain Description (SVDD) in color images. Conventional face detection algorithms require a training procedure using both face and non-face images. In SVDD however we employ only face images for training. We can detect faces in color images from the radius and center pairs of SVDD. We also use Entropic Threshold for extracting the facial feature and sliding window for improved performance while saving processing time. The experimental results indicate the effectiveness and efficiency of the proposed algorithm compared to conventional PCA (Principal Component Analysis)-based methods.

A Video Sequence Coding Using Dynamic Selection of Unrestricted Motion Vector Mode in H.263 (H.263의 비제한 움직임 벡터 모드의 동적 선택을 이용한 영상 부호화)

  • 박성한;박성태
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.8
    • /
    • pp.1075-1088
    • /
    • 2001
  • In this paper, we propose a method for dynamic selection of unrestricted motion vector(UMV) or default prediction mode(DPM) in H.263 bit stream. For this, we use the error of compensated image and the magnitude of motion vector. In the proposed strategy, the UMV mode is dynamically applied in a frame according to average magnitude of motion vector and error of compensated image. This scheme has improved the quality of image compared to the fixed mode UMV or DPM only. Number of searching points are greatly reduced when comparing to UMV The proposed method is more profitable to long video sequences having camera movement locally.

  • PDF

A Study on the Optimum Weight Vector of Linearly Constrained Conditions (선형 제한 조건의 최적 가중 벡터에 대한 연구)

  • Shin, Ho-Sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.101-107
    • /
    • 2011
  • The optimum weight vector is studied to remove interference and jamming signals in adaptive array antenna system. The optimum weight vector is calculated to apply a minimum variance algorithm and cost function in linearly constrained conditions, and accurately estimates target's signal. Adaptive array antenna system is the system which improves signal to noise ratio(SNR) and decreases interference and jammer power. Adaptive array antenna system delays at tap output of antenna array element. Each tap finally makes the complex signal of one in multiplier complex weight. In order to obtain optimum's weight calculation, optimum weight vector is used in this paper. After simulation, resolution is increased below $3^{\circ}$, and sidelobe is decreased about 10 dB.

A Video Sequence Coding Using Dynamic Selection of Unrestricted Motion Vector Mode in H.263 (H.263의 비제한 움직임 벡터 모드의 동적 선택을 이용한 영상 부호화)

  • 박성한;박성태
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.7
    • /
    • pp.997-1014
    • /
    • 2001
  • In this paper, we propose a method for dynamic selection of unrestricted motion vector(UMV) or default prediction mode(DPM) in H.263 bit stream. For this, we use the error of compensated image and the magnitude of motion vector. In the proposed strategy, the UMV mode is dynamically applied in a frame according to average magnitude of motion vector and error of compensated image. This scheme has improved the quality of image compared to the fixed mode UMV or DPM only. Number of searching points are greatly reduced when comparing to UMV. The Proposed method is more profitable to long video sequences having camera movement locally.

  • PDF

Visualization of Vector Fields from Density Data Using Moving Least Squares Based on Monte Carlo Method (몬테카를로 방법 기반의 이동최소제곱을 이용한 밀도 데이터의 벡터장 시각화)

  • Jong-Hyun Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose a new method to visualize different vector field patterns from density data. We use moving least squares (MLS), which is used in physics-based simulations and geometric processing. However, typical MLS does not take into account the nature of density, as it is interpolated to a higher order through vector-based constraints. In this paper, we design an algorithm that incorporates Monte Carlo-based weights into the MLS to efficiently account for the density characteristics implicit in the input data, allowing the algorithm to represent different forms of white noise. As a result, we experimentally demonstrate detailed vector fields that are difficult to represent using existing techniques such as naive MLS and divergence-constrained MLS.

How to Retrieve Music using Mood Tags in a Folksonomy

  • Chang Bae Moon;Jong Yeol Lee;Byeong Man Kim
    • Journal of Web Engineering
    • /
    • v.20 no.8
    • /
    • pp.2335-2360
    • /
    • 2021
  • A folksonomy is a classification system in which volunteers collaboratively create and manage tags to annotate and categorize content. The folksonomy has several problems in retrieving music using tags, including problems related to synonyms, different tagging levels, and neologisms. To solve the problem posed by synonyms, we introduced a mood vector with 12 possible moods, each represented by a numeric value, as an internal tag. This allows moods in music pieces and mood tags to be represented internally by numeric values, which can be used to retrieve music pieces. To determine the mood vector of a music piece, 12 regressors predicting the possibility of each mood based on acoustic features were built using Support Vector Regression. To map a tag to its mood vector, the relationship between moods in a piece of music and mood tags was investigated based on tagging data retrieved from Last.fm, a website that allows users to search for and stream music. To evaluate retrieval performance, music pieces on Last.fm annotated with at least one mood tag were used as a test set. When calculating precision and recall, music pieces annotated with synonyms of a given query tag were treated as relevant. These experiments on a real-world data set illustrate the utility of the internal tagging of music. Our approach offers a practical solution to the problem caused by synonyms.