• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.026 seconds

Prosodic-Boundary Prediction for Korean Text-to-Speech System (한국어 TTS 시스템을 위한 운율구 경계 예측)

  • Chun Jin-wook;Kim Han Woo;Kim Dong gun;Lee Yanghee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.77-82
    • /
    • 2002
  • 운율은 음성의 초분절적인 면에 연관하는 음성의 한 성으로서 통상적으로 화자는 음성을 달하는 과정에서 청자의 이해를 돕기 위해 운율을 사용하게 된다. 본 논문은 이러한 운율을 이루는 성분 중의 하나인 운율구의 위치 예측에 대한 성능을 향상시키는 것에 그 목적을 둔다. 한국어 운율 정보에 대한 표기 방법 중의 하나인 K-ToBI를 기반으로 하여, 운율구의 경계와 그에 대한 레벨을 Break Indices 정보로서 나타내었고, 통계학 분야에서 제안된 Support Vector Machine(SVM)을 이용하여 시스템의 예측률 향상을 꾀하였다. 기존의 방법에서 사용된 트리 기반 모델을 이용하여 한국어 운율에 가장 많은 영향을 끼치는 언어 정보들을 추출하였고 이를 실험에 적용하였다. 기존의 트리 모델과 SVM 모델에 대한 예측률을 비교한 결과, 경계 유무 정보 예측과 4단계의 레벨을 가지는 경계 정보의 예측에서 모두 본 방법이 보다 높은 예측률을 보여 주어 본 연구에서 제시한 접근법이 운율구의 경계 정보를 예측하는 데에 있어 더욱 효과적인 접근법임을 실험적으로 입증하였다.

  • PDF

Background Surface Estimation for Reverse Engineering of Reliefs

  • Liu, Shenglan;Martin, Ralph R.;Langbein, Frank C.;Rosin, Paul L.
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 2007
  • Reverse engineering of reliefs aims to turn an existing relief superimposed on an underlying surface into a geometric model which may be applied to a different base surface. Steps in this process include segmenting the relief from the background, and describing it as an offset height field relative to the underlying surface. We have previously considered relief segmentation using a geometric snake. Here, we show how to use this initial segmentation to estimate the background surface lying under the relief, which can be used (i) to refine the segmentation and (ii) to express the relief as an offset field. Our approach fits a B-spline surface patch to the measured background data surrounding the relief, while tension terms ensure this background surface smoothly continues underneath the relief where there are no measured background data points to fit. After making an initial estimate of relief offset height everywhere within the patch, we use a support vector machine to refine the segmentation. Tests demonstrate that this approach can accurately model the background surface where it underlies the relief, providing more accurate segmentation, as well as relief height field estimation. In particular, this approach provides significant improvements for relief concavities with narrow mouths and can segment reliefs with small internal holes.

Regeneration of Plausible Lighting using a Specular Sphere in Augmented Reality (증강현실에서의 반사구를 활용한 사실적 조명 생성)

  • Lee, Seok-Jun;Jung, Soon-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.3
    • /
    • pp.21-31
    • /
    • 2011
  • This paper presents a practical method to estimate the directions of light sources in real environment, using a mirror sphere placed on a set of known natural features in augmented reality. For the stable result of static lighting, we take the multiple images around the sphere and estimate the principal light directions of the vector clusters for each light source in realtime. We also estimate the moving illuminant for changes of the scene illumination, and augment the virtual objects onto the real image with the proper highlighting and shadows. The proposed method of this paper can be applied to augmented reality visualization without any previous information respecting the environmental illuminations.

An automatic detection method for lung nodules based on multi-scale enhancement filters and 3D shape features

  • Hao, Rui;Qiang, Yan;Liao, Xiaolei;Yan, Xiaofei;Ji, Guohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.347-370
    • /
    • 2019
  • In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive rate is common because the density and the computed tomography (CT) values of the vessel and the nodule in the CT images are similar, which affects the detection accuracy of pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules based on multi-scale enhancement filters and 3D shape features is proposed. The method uses an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types of multi-scale enhancement filters are constructed to enhance the images of nodules and blood vessels in 3D lung images, and most of the blood vessel images in the nodular images are removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, and the features of the suspected nodules are extracted. A support vector machine (SVM) classifier is used to classify the pulmonary nodules. The experimental results show that our method can effectively detect pulmonary nodules and reduce false positive rates, and the feature descriptor proposed in this paper is valid which can be used to distinguish between nodules and blood vessels.

Wellness Prediction in Diabetes Mellitus Risks Via Machine Learning Classifiers

  • Saravanakumar M, Venkatesh;Sabibullah, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.203-208
    • /
    • 2022
  • The occurrence of Type 2 Diabetes Mellitus (T2DM) is hoarding globally. All kinds of Diabetes Mellitus is controlled to disrupt over 415 million grownups worldwide. It was the seventh prime cause of demise widespread with a measured 1.6 million deaths right prompted by diabetes during 2016. Over 90% of diabetes cases are T2DM, with the utmost persons having at smallest one other chronic condition in UK. In valuation of contemporary applications of Big Data (BD) to Diabetes Medicare by sighted its upcoming abilities, it is compulsory to transmit out a bottomless revision over foremost theoretical literatures. The long-term growth in medicine and, in explicit, in the field of "Diabetology", is powerfully encroached to a sequence of differences and inventions. The medical and healthcare data from varied bases like analysis and treatment tactics which assistances healthcare workers to guess the actual perceptions about the development of Diabetes Medicare measures accessible by them. Apache Spark extracts "Resilient Distributed Dataset (RDD)", a vital data structure distributed finished a cluster on machines. Machine Learning (ML) deals a note-worthy method for building elegant and automatic algorithms. ML library involving of communal ML algorithms like Support Vector Classification and Random Forest are investigated in this projected work by using Jupiter Notebook - Python code, where significant quantity of result (Accuracy) is carried out by the models.

A Motion Estimation Method Using a New Cost Function for Frame Rate Up Conversion (프레임 율 변환을 위한 새로운 비용함수를 사용한 움직임 추정 기법)

  • Lee, Hanee;Choi, Dooseop;Wee, Seounghyun;Kim, Taejeong
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.613-616
    • /
    • 2010
  • 본 논문에서는 새로운 움직임 추정(motion estimation, ME) 방식을 사용한 프레임 비율 변환(frame rate conversion, FRC) 기법에 대해 제안한다. 기존의 프레임 비율 변환을 위한 움직임 추정 방식은 영상 압축에서 사용되고 있는 SAD를 사용하여 블록(block) 단위로 움직임 벡터를 추정하는 방식에 기초를 두고 있다. 그러나 잔여 신호(residual signal)를 저장하는 영상 압축과 달리, 잘못된 움직임 추정은 합성된 출력 영상에서 심각한 품질 저하를 가져올 수 있다. 이를 보완하기 위해 움직임 개선(motion refinement, MR)이 사용되고 있지만, 근본적인 해결을 위해서는 정확한 움직임 추정 알고리즘 사용이 필요하다. 특히 SAD를 통한 움직임 추정은 고르지 못한 움직임 벡터장(motion vector field, MVF)을 형성할 수 있으며, 종래의 연구에서 이를 해결하기 위해 SAD(sum of absolute difference)에 벡터의 공간제약(spatial constraint) 항목을 추가하여 비교적 고른 움직임 벡터장을 형성하는 방식이 제시되었다. SAD와 공간 제약 항목의 반영 비율에 따라 움직임 벡터의 중요성과 움직임 벡터장의 일관성이 서로 상충하는데, 기존의 방식은 이 비율을 일정한 상수(constant)값을 사용하고 있으며, 이러한 방식은 이미지의 특성에 따라 결과가 달라진다. 본 논문에서는 SAD와 공간 제약 항목 사이의 반영 비율을 이미지의 특성에 적응하는 방식을 사용하는 움직임 예측을 제시하고, 수행한 결과를 기존의 방식에 의한 결과와 비교하였다.

Attention-based CNN-BiGRU for Bengali Music Emotion Classification

  • Subhasish Ghosh;Omar Faruk Riad
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2023
  • For Bengali music emotion classification, deep learning models, particularly CNN and RNN are frequently used. But previous researches had the flaws of low accuracy and overfitting problem. In this research, attention-based Conv1D and BiGRU model is designed for music emotion classification and comparative experimentation shows that the proposed model is classifying emotions more accurate. We have proposed a Conv1D and Bi-GRU with the attention-based model for emotion classification of our Bengali music dataset. The model integrates attention-based. Wav preprocessing makes use of MFCCs. To reduce the dimensionality of the feature space, contextual features were extracted from two Conv1D layers. In order to solve the overfitting problems, dropouts are utilized. Two bidirectional GRUs networks are used to update previous and future emotion representation of the output from the Conv1D layers. Two BiGRU layers are conntected to an attention mechanism to give various MFCC feature vectors more attention. Moreover, the attention mechanism has increased the accuracy of the proposed classification model. The vector is finally classified into four emotion classes: Angry, Happy, Relax, Sad; using a dense, fully connected layer with softmax activation. The proposed Conv1D+BiGRU+Attention model is efficient at classifying emotions in the Bengali music dataset than baseline methods. For our Bengali music dataset, the performance of our proposed model is 95%.

Translation Pre-processing Technique for Improving Analysis Performance of Korean News (한국어 뉴스 분석 성능 향상을 위한 번역 전처리 기법)

  • Lee, Ji-Min;Jeong, Da-Woon;Gu, Yeong-Hyeon;Yoo, Seong-Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.619-623
    • /
    • 2020
  • 한국어는 교착어로 1개 이상의 형태소가 단어를 이루고 있기 때문에 텍스트 분석 시 형태소를 분리하는 작업이 필요하다. 자연어를 처리하는 대부분의 알고리즘은 영미권에서 만들어졌고 영어는 굴절어로 특정 경우를 제외하고 일반적으로 하나의 형태소가 단어를 구성하는 구조이다. 그리고 영문은 주로 띄어쓰기 위주로 토큰화가 진행되기 때문에 텍스트 분석이 한국어에 비해 복잡함이 떨어지는 편이다. 이러한 이유들로 인해 한국어 텍스트 분석은 영문 텍스트 분석에 비해 한계점이 있다고 알려져 있다. 한국어 텍스트 분석의 성능 향상을 위해 본 논문에서는 번역 전처리 기법을 제안한다. 번역 전처리 기법이란 원본인 한국어 텍스트를 영문으로 번역하고 전처리를 거친 뒤 분석된 결과를 재번역하는 것이다. 본 논문에서는 한국어 뉴스 기사 데이터와 번역 전처리 기법이 적용된 영문 뉴스 텍스트 데이터를 사용했다. 그리고 주제어 역할을 하는 키워드를 단어 간의 유사도를 계산하는 알고리즘인 Word2Vec(Word to Vector)을 통해 유사 단어를 추출했다. 이렇게 도출된 유사 단어를 텍스트 분석 전문가 대상으로 성능 비교 투표를 진행했을 때, 한국어 뉴스보다 번역 전처리 기법이 적용된 영문 뉴스가 약 3배의 득표 차이로 의미있는 결과를 도출했다.

  • PDF

Medical Image Classification and Retrieval Using Ensemble Combination of Visual Descriptors (시각 기술자들의 앙상블 결합을 이용한 의료 영상 분류와 검색)

  • Ki-Hee Park;Jeong-Hee Shim;Byoung-Chul Ko;Jae-Yeal Nam
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.96-99
    • /
    • 2008
  • 본 논문은 의료 영상을 효과적으로 분류하고 검색 하기 위한 새로운 알고리즘을 제안한다. 의료 영상 중 X-Ray 영상은 어두운 배경에 반해 밝은 전경을 갖고 있기 때문에, 전경의 두드러진 부분에서만 시각 기술자로 추출한다. 우선, 색 구조 기술자(H-CSD)에서 해리스 코너 검출기로 검출한 관심 포인트들에서 색상 특징을 추출하고, 경계선 히스토그램 기술자에서 영상의 전역 및 지역적 질감 특징을 추출한다. 추출된 특징 벡터는 멀티클래스 SVM 에 적용되어 각 영상을 위한 멤버십 스코어를 얻는다. 이후, H-CSD와 EHD 에 대한 SVM 의 멤버십 스코어를 앙상블 결합하여 하나의 특징 벡터로 생성하고, K-nearest Neighborhood 방법을 이용하여 상위-K 개의 영상을 검색을 하도록 하였다. imageCLEFmed2007 을 이용한 실험 결과에서 다른 전역적 속성 또는 분류 기반 검색 방법에 비교하여 보다 개선된 검색 성능을 나타냄을 확인하였다.

Using Machine Learning Techniques for Accurate Attack Detection in Intrusion Detection Systems using Cyber Threat Intelligence Feeds

  • Ehtsham Irshad;Abdul Basit Siddiqui
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.179-191
    • /
    • 2024
  • With the advancement of modern technology, cyber-attacks are always rising. Specialized defense systems are needed to protect organizations against these threats. Malicious behavior in the network is discovered using security tools like intrusion detection systems (IDS), firewall, antimalware systems, security information and event management (SIEM). It aids in defending businesses from attacks. Delivering advance threat feeds for precise attack detection in intrusion detection systems is the role of cyber-threat intelligence (CTI) in the study is being presented. In this proposed work CTI feeds are utilized in the detection of assaults accurately in intrusion detection system. The ultimate objective is to identify the attacker behind the attack. Several data sets had been analyzed for attack detection. With the proposed study the ability to identify network attacks has improved by using machine learning algorithms. The proposed model provides 98% accuracy, 97% precision, and 96% recall respectively.