• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.028 seconds

An SNR Scalable Video Coding using Linearly Combined Motion Vectors

  • Ryu, Chang-Hoon;Byoungjun Han;Park, Kwang-Pyo;Yoon, Eung-Sik;Lee, Keun-Young
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.50-53
    • /
    • 2002
  • There are increasing needs to deliver the multimedia streaming over heterogeneous networks. When considering network environments and equipment accessed by user, delivery of video streaming must be scalable. There are many kinds of scalable video coding: spatial, temporal, SNR, and hybrid. The SNR scalable and spatial resolution, but different SNR quality with respect to layers. The 1-layer SNR scalable encoder produces SNR scalable video streams with ease. But, there is drift problem. Modified 1-layer approach does not have this problem but coding inefficiency, and is not MPEG-compliant. The present MPEG-compliant 2-layer encoder comes out to reduce coding rate. But it still use only base layer to encode whole layer. In this paper, we propose adaptive MPEG-compliant 2-layer encoder. Using linear combination algorithm, encoder use 1 motion vector to encode the sequences efficiently. By dong this, we can achieve the coding efficiency of SNR scalable coding.

  • PDF

Robust Person Identification Using Optimal Reliability in Audio-Visual Information Fusion

  • Tariquzzaman, Md.;Kim, Jin-Young;Na, Seung-You;Choi, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3E
    • /
    • pp.109-117
    • /
    • 2009
  • Identity recognition in real environment with a reliable mode is a key issue in human computer interaction (HCI). In this paper, we present a robust person identification system considering score-based optimal reliability measure of audio-visual modalities. We propose an extension of the modified reliability function by introducing optimizing parameters for both of audio and visual modalities. For degradation of visual signals, we have applied JPEG compression to test images. In addition, for creating mismatch in between enrollment and test session, acoustic Babble noises and artificial illumination have been added to test audio and visual signals, respectively. Local PCA has been used on both modalities to reduce the dimension of feature vector. We have applied a swarm intelligence algorithm, i.e., particle swarm optimization for optimizing the modified convection function's optimizing parameters. The overall person identification experiments are performed using VidTimit DB. Experimental results show that our proposed optimal reliability measures have effectively enhanced the identification accuracy of 7.73% and 8.18% at different illumination direction to visual signal and consequent Babble noises to audio signal, respectively, in comparison with the best classifier system in the fusion system and maintained the modality reliability statistics in terms of its performance; it thus verified the consistency of the proposed extension.

A Comprehensive Review of Emerging Computational Methods for Gene Identification

  • Yu, Ning;Yu, Zeng;Li, Bing;Gu, Feng;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.1-34
    • /
    • 2016
  • Gene identification is at the center of genomic studies. Although the first phase of the Encyclopedia of DNA Elements (ENCODE) project has been claimed to be complete, the annotation of the functional elements is far from being so. Computational methods in gene identification continue to play important roles in this area and other relevant issues. So far, a lot of work has been performed on this area, and a plethora of computational methods and avenues have been developed. Many review papers have summarized these methods and other related work. However, most of them focus on the methodologies from a particular aspect or perspective. Different from these existing bodies of research, this paper aims to comprehensively summarize the mainstream computational methods in gene identification and tries to provide a short but concise technical reference for future studies. Moreover, this review sheds light on the emerging trends and cutting-edge techniques that are believed to be capable of leading the research on this field in the future.

A Identification of Malicious Node and Secure Communications in MANET (MANET에서 악의적인 노드 확인에 기반한 Secure 라우팅 방안)

  • Park Gun-Woo;Byeon Yong-Sung;Lee Seung-Chan;Ma Yong-Jae;Song Joo-Seok
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.749-753
    • /
    • 2006
  • 최근 Mobile Ad-hoc Networks(MANET)에서 보안 요소를 추가한 라우팅 연구가 활발히 진행되어 왔다. 하지만 기존 연구들은 대부분 secure 라우팅 또는 패킷 자체에 대한 악의적인 행위가 이루어지는 부분 중 어느 한 측면에 대해서만 연구되어져 왔다. 이와 같은 방법들은 악의적인 노드를 확인하더라도 라우팅 경로 설정과정에서 악의적인 행위가 이루어지거나 라우팅 경로 설정에 대한 공격은 차단하더라고 패킷에 대한 악의적인 행위가 이루어지면 네트워크 내 보안 측면에서 큰 효율성을 기대할 수 없다. 따라서 본 논문에서는 일정기간 악의저인 행위가 이루어지는 노드를 확인하여 각 노드에 대한 신뢰단계를 구성 후, 획득한 각 노드의 신뢰레벨에 따라 라우팅 경로를 설정함으로써 패킷 및 라우팅 경로 설정에 대해 이루어질 수 있는 악의적인 행위를 효율적으로 대응 할 수 있는 방안인 IMSec(A identification of malicious node and secure communications in MANET)을 제안한다. IMSec은 AODV(Ad-hoc On-demand Distance Vector Routing)를 기반으로 하였다. NS-2 네트워크 시뮬레이션 결과를 통해, 제안된 IMSec은 기존 프로토콜보다 네트워크의 부하를 감소시킨 상태에서 악의적인 노드를 더 정확하고 신속하게 찾아냄을 보였다.

  • PDF

A Novel Character Segmentation Method for Text Images Captured by Cameras

  • Lue, Hsin-Te;Wen, Ming-Gang;Cheng, Hsu-Yung;Fan, Kuo-Chin;Lin, Chih-Wei;Yu, Chih-Chang
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.729-739
    • /
    • 2010
  • Due to the rapid development of mobile devices equipped with cameras, instant translation of any text seen in any context is possible. Mobile devices can serve as a translation tool by recognizing the texts presented in the captured scenes. Images captured by cameras will embed more external or unwanted effects which need not to be considered in traditional optical character recognition (OCR). In this paper, we segment a text image captured by mobile devices into individual single characters to facilitate OCR kernel processing. Before proceeding with character segmentation, text detection and text line construction need to be performed in advance. A novel character segmentation method which integrates touched character filters is employed on text images captured by cameras. In addition, periphery features are extracted from the segmented images of touched characters and fed as inputs to support vector machines to calculate the confident values. In our experiment, the accuracy rate of the proposed character segmentation system is 94.90%, which demonstrates the effectiveness of the proposed method.

Development of an Actor-Critic Deep Reinforcement Learning Platform for Robotic Grasping in Real World (현실 세계에서의 로봇 파지 작업을 위한 정책/가치 심층 강화학습 플랫폼 개발)

  • Kim, Taewon;Park, Yeseong;Kim, Jong Bok;Park, Youngbin;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.197-204
    • /
    • 2020
  • In this paper, we present a learning platform for robotic grasping in real world, in which actor-critic deep reinforcement learning is employed to directly learn the grasping skill from raw image pixels and rarely observed rewards. This is a challenging task because existing algorithms based on deep reinforcement learning require an extensive number of training data or massive computational cost so that they cannot be affordable in real world settings. To address this problems, the proposed learning platform basically consists of two training phases; a learning phase in simulator and subsequent learning in real world. Here, main processing blocks in the platform are extraction of latent vector based on state representation learning and disentanglement of a raw image, generation of adapted synthetic image using generative adversarial networks, and object detection and arm segmentation for the disentanglement. We demonstrate the effectiveness of this approach in a real environment.

Detection of Traffic Flooding Attacks using SVDD and SNMP MIB (SVDD와 SNMP MIB을 이용한 트래픽 폭주 공격의 탐지)

  • Yu, Jae-Hak;Park, Jun-Sang;Lee, Han-Sung;Kim, Myung-Sup;Park, Dai-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06a
    • /
    • pp.124-127
    • /
    • 2008
  • DoS/DDoS로 대표되는 트래픽 폭주 공격은 대상 시스템뿐만 아니라 네트워크 대역폭, 프로세서 처리능력, 시스템 자원 등에 악영향을 줌으로써 네트워크에 심각한 장애를 유발할 수 있다. 따라서 신속한 트래픽 폭주 공격의 탐지는 안정적인 서비스 제공 및 시스템 운영에 필수요건이다. 전통적인 패킷 수집을 통한 DoS/DDoS의 탐지방법은 공격에 대한 상세한 분석은 가능하나 설치의 확장성 부족, 고가의 고성능 분석시스템의 요구, 신속한 탐지를 보장하지 못한다는 문제점을 갖고 있다. 본 논문에서는 15초 단위의 SNMP MIB 객체 정보를 바탕으로 SVDD(support vector data description)를 이용하여 보다 빠르고 정확한 침입탐지와 쉬운 확장성, 저비용탐지 및 정확한 공격유형별 분류를 가능케 하는 새로운 시스템을 설계 및 구현하였다. 실험을 통하여 만족스러운 침입 탐지율과 안전한 false negative rate, 공격유형별 분류율 수치 등을 확인함으로써 제안된 시스템의 성능을 검증하였다.

  • PDF

Cancer Prediction Based on Radical Basis Function Neural Network with Particle Swarm Optimization

  • Yan, Xiao-Bo;Xiong, Wei-Qing;Hu, Liang;Zhao, Kuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7775-7780
    • /
    • 2014
  • This paper addresses cancer prediction based on radial basis function neural network optimized by particle swarm optimization. Today, cancer hazard to people is increasing, and it is often difficult to cure cancer. The occurrence of cancer can be predicted by the method of the computer so that people can take timely and effective measures to prevent the occurrence of cancer. In this paper, the occurrence of cancer is predicted by the means of Radial Basis Function Neural Network Optimized by Particle Swarm Optimization. The neural network parameters to be optimized include the weight vector between network hidden layer and output layer, and the threshold of output layer neurons. The experimental data were obtained from the Wisconsin breast cancer database. A total of 12 experiments were done by setting 12 different sets of experimental result reliability. The findings show that the method can improve the accuracy, reliability and stability of cancer prediction greatly and effectively.

Stress Detection and Classification of Laying Hens by Sound Analysis

  • Lee, Jonguk;Noh, Byeongjoon;Jang, Suin;Park, Daihee;Chung, Yongwha;Chang, Hong-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.592-598
    • /
    • 2015
  • Stress adversely affects the wellbeing of commercial chickens, and comes with an economic cost to the industry that cannot be ignored. In this paper, we first develop an inexpensive and non-invasive, automatic online-monitoring prototype that uses sound data to notify producers of a stressful situation in a commercial poultry facility. The proposed system is structured hierarchically with three binary-classifier support vector machines. First, it selects an optimal acoustic feature subset from the sound emitted by the laying hens. The detection and classification module detects the stress from changes in the sound and classifies it into subsidiary sound types, such as physical stress from changes in temperature, and mental stress from fear. Finally, an experimental evaluation was performed using real sound data from an audio-surveillance system. The accuracy in detecting stress approached 96.2%, and the classification model was validated, confirming that the average classification accuracy was 96.7%, and that its recall and precision measures were satisfactory.

A Novel Multifocus Image Fusion Algorithm Based on Nonsubsampled Contourlet Transform

  • Liu, Cuiyin;Cheng, Peng;Chen, Shu-Qing;Wang, Cuiwei;Xiang, Fenghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.539-557
    • /
    • 2013
  • A novel multifocus image fusion algorithm based on NSCT is proposed in this paper. In order to not only attain the image focusing properties and more visual information in the fused image, but also sensitive to the human visual perception, a local multidirection variance (LEOV) fusion rule is proposed for lowpass subband coefficient. In order to introduce more visual saliency, a modified local contrast is defined. In addition, according to the feature of distribution of highpass subband coefficients, a direction vector is proposed to constrain the modified local contrast and construct the new fusion rule for highpass subband coefficients selection The NSCT is a flexible multiscale, multidirection, and shift-invariant tool for image decomposition, which can be implemented via the atrous algorithm. The proposed fusion algorithm based on NSCT not only can prevent artifacts and erroneous from introducing into the fused image, but also can eliminate 'block effect' and 'frequency aliasing' phenomenon. Experimental results show that the proposed method achieved better fusion results than wavelet-based and CT-based fusion method in contrast and clarity.