• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.026 seconds

Fast Pedestrian Detection Using Histogram of Oriented Gradients and Principal Components Analysis

  • Nguyen, Trung Quy;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • In this paper, we propose a fast and accurate system for detecting pedestrians from a static image. Histogram of Oriented Gradients (HOG) is a well-known feature for pedestrian detection systems but extracting HOG is expensive due to its high dimensional vector. It will cause long processing time and large memory consumption in case of making a pedestrian detection system on high resolution image or video. In order to deal with this problem, we use Principal Components Analysis (PCA) technique to reduce the dimensionality of HOG. The output of PCA will be input for a linear SVM classifier for learning and testing. The experiment results showed that our proposed method reduces processing time but still maintains the similar detection rate. We got twenty five times faster than original HOG feature.

SOM-based Combination Method of OVA SVMs for Effective Fingerprint Classification (효과적인 지문분류를 위한 SOM기반 OVA SVM의 결합 기법)

  • Hong Jin-Hyuk;Min Jun-Ki;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.622-624
    • /
    • 2005
  • 대규모 지문인식 시스템에서 비교해야할 지문의 수를 줄이기 위해서 지문분류는 필수적인 과정이다. 최근 이진분류기인 지지 벡터 기계(Support Vector Machine: SVM)를 이용한 지문분류 기법이 많이 연구되고 있다. 본 논문에서는 다중부류 지문분류에 적합하도록 자기 구성 지도(Self-Organizing Map:SOM)를 이용하여 OVA(One-Vs-All) SVM들을 결합하는 지문분류 기법을 제안한다. SOM을 이용하여 OVA SVM들을 동적으로 결합하기 위한 결합 지도를 생성하여 지문분류 성능을 높인다. 지문분류에 있어 대표적인 NIST-4 지문 데이터베이스를 대상으로 Jain이 구축한 FingerCode 데이터베이스에 제안하는 방법을 적용하여 $1.8\%$의 거부율에서 $90.5\%$의 분류율을 획득하였으며, 기존의 결합 방법인 승자독식(Winner-takes-all)과 다수결 투표(Majority vote)보다 높은 성능을 확인하였다.

  • PDF

Image Vector Extraction Method using Spark Framework for Image Retrieval System (이미지 검색 시스템을 위한 Spark 기반의 이미지 벡터 추출 기법)

  • Kim, Tae Yeon;Seo, HoJin;Lee, Young-Koo
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.726-729
    • /
    • 2015
  • 최근 네트워크 및 카메라 모듈의 발전으로 인해 생성되는 이미지 데이터의 양이 대용량화 되고 있으며, 이미지 데이터를 이용한 이미지 검색 서비스가 제공되고 있다. 이미지 검색 서비스를 제공하기 위해 이미지 데이터베이스 구축이 요구된다. 효율적인 데이터베이스 구축을 위해 Bow 기법을 이용하여 데이터의 차수를 낮춘 후 이미지 벡터를 저장하는 방식을 사용한다. 그러나 이미지 데이터의 수가 급격히 증가하여 오랜 수행 시간을 요구한다. 본 논문에서 인-메모리 기반 분산 프레임워크인 스파크를 이용한 이미지 벡터 생성 과정을 분산 설계하였다. 실험을 통해 제안하는 분산 처리 기법이 기존방법에 비해 효율적임을 보인다.

A Study on the analyzation method of EEG adapting Dataset (Dataset을 활용한 뇌파 데이터 분석 방법에 관한 연구)

  • Lee, HyunJu;Shin, DongIl;Shin, DongKyoo
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.995-997
    • /
    • 2014
  • 뇌파는 최근에 가장 많이 연구되고 있는 생체신호이다. 본 연구에서는 오픈 감정뇌파데이터인 DEAP Dataset를 활용한 데이터 분석 실험을 시행하였다. DEAP Dataset는 총 32개의 데이터이며, 32채널로 구성되어 있다. 전처리 과정에서는 디지털 필터인 IIR(Infinite Impulse Response) Filter를 사용하여 잡음을 제거하였고, 인공산물인 안구잡파(EOG: Electrooculograms) 제거에는 LMS(the Least Mean squares) 알고리즘을 사용하였다. 감정분류는 Valence-Arousal 평면을 사용하여 네 개의 감정으로 구분하였고, 분류 실험으로는 패턴인식 알고리즘인 SVM(support Vector Machine)를 사용하였다. 실험결과 SVM이 70%대의 결과를 도출하여 이전 실험결과보다 높은 정확도를 도출하였다.

Spectrum Sensing for Cognitive Radio based on RVM

  • Shi, Shangkun;Yan, Jiao;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.86-88
    • /
    • 2019
  • In a complex geographical environment, communication quality of communication equipment is being seriously challenged. Secondary Users(SUs) must make the best possible use the idle spectrums that Primary Users(PUs) do not use and change spectrum frequently. Using the relevance vector machine(RVM) to establish a signal noise Ratio(SNR) Model for interference information and bit error rate(BER). Through the model and real-time interference information, the minimum channel SNR meeting the BER requirements of communication equipment can be predicted, and we can also calculate the minimum transmitted power. According to the simulation results, this method has better performance for selecting available channel and restraining interference.

Modified distance measures for PCA-based face recognition

  • Song Young-Jun;Kim Young-Gil;Kim Nam
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.1-4
    • /
    • 2005
  • In this paper, we compare 5 weighted distance measures between feature vectors with respect to the recognition performance of the principal component analysis(PCA)-based face recognition method, and propose modified weighted distance. The proposed method was modification of z, the weighted vector. The simulation was performed using the ORL face database, showed the best result for some weighted distances such as weighted manhattan, weighted angle-based, weighted modified manhattan, and weighted modified SSE. We also showed that using some various values of z(weighted values) we can achieve better recognition results that using the existing weighted value.

  • PDF

Fuzzy Control for Back to Back Converter in Double-Fed Induction Machine in Wind Power Generation System

  • Sastrowijoyo, Fajar;Windarko, Novie Ayub;Choi, Jaeho;Chung, Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.276-277
    • /
    • 2010
  • This paper describes the control of a utility-connected doublefed induction machine (DFIM) for wind power generation systems (WPGS). Real and reactive powers (PQ) at the stator side of DFIM are strictly controlled to supply the power to the grid without any problems. In this paper the control is realized using Fuzzy PI controller based on the stator-flux orientation control.

  • PDF

A Comparative Study on Feature Combination for MathML Formula Classification (MathML 수식 분류를 위한 자질 조합 비교 연구)

  • Kim, Shin-Il;Yang, Seon;Ko, Young-Joong
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.37-41
    • /
    • 2010
  • 본 논문에서는 Mathematical Markup Language(MathML) 형식으로 작성된 수학식 분류를 위해 필요한 자질과 성능 향상에 기여하는 자질 조합을 비교 평가한다. 이것은 MathML 형식의 수학식을 분석하기 위한 전처리 작업으로, 연산자의 모호성을 해소하기 위한 가장 기본적인 단계에 해당한다고 볼 수 있다. 실험에 사용되는 기본자질(Baseline)은 MathML 태그 정보와 연산자이고, 여기에 다른 자질들을 추가하며 가장 높은 분류 성능을 가지는 자질을 찾는 방식으로 진행하였다. 학습은 지지벡터기기(Support Vector Machine: SVM)를 사용하였고 분류하고자 하는 단원은 '수학의 정석' 책을 토대로 총 12개(집합, 명제, 미분, 적분 등)로 나누었다. 실험을 통해 MathML 문서 안에서 가장 유용한 자질이 '식별자&연산자 바이그램'인 것을 알 수 있었고, 여러 가지 자질들을 조합하여 수학식을 분류한 결과 92.5%의 성능으로 분류하는 것을 확인할 수 있었다.

  • PDF

Political Opinion Mining from Article Comments using Deep Learning

  • Sung, Dae-Kyung;Jeong, Young-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Policy polls, which investigate the degree of support that the policy has for policy implementation, play an important role in making decisions. As the number of Internet users increases, the public is actively commenting on their policy news stories. Current policy polls tend to rely heavily on phone and offline surveys. Collecting and analyzing policy articles is useful in policy surveys. In this study, we propose a method of analyzing comments using deep learning technology showing outstanding performance in various fields. In particular, we designed various models based on the recurrent neural network (RNN) which is suitable for sequential data and compared the performance with the support vector machine (SVM), which is a traditional machine learning model. For all test sets, the SVM model show an accuracy of 0.73 and the RNN model have an accuracy of 0.83.

Restarting Method for EEMF Based Sensorless Permanent Magnet Synchronous Motor Drive Systems (EEMF 기반 센서리스 영구자석 동기전동기 구동 시스템의 구동 재개 방법)

  • Lee, Young-Jae;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • This paper proposes a restarting method for extended electromotive force (EEMF)-based sensorless permanent magnet synchronous motor (PMSM) drive systems. The sensorless PMSM drive systems generally estimate the rotor speed and angle based on EEMF. However, if the inverter is stopped while the PMSM is rotating, the initial rotor speed and angle are required for restart. Therefore, the proposed restarting method estimates the initial rotor speed and angle using the short-circuit current generated by applying zero voltage vector from the inverter. The validity of the proposed method is verified by simulation and experimental results.