Kim, Jin-Duk;Jung, Jae-Hong;Kim, ARan;Sin, Yong-Tae
Annual Conference of KIPS
/
2012.04a
/
pp.552-555
/
2012
애드 혹 네트워크는 고정된 인프라 없이 동적으로 구성되는 이동 노드들의 집합으로 독립성을 높일 수 있다. 현재 애드 혹 라우팅 프로토콜과 관련해 단일 경로를 제공하는 라우팅 프로토콜이 제안되어 있으나 노드의 잦은 이동으로 인한 경로 재설정이 발생하는 애드 혹 네트워크의 특성으로 인하여 오버헤드와 지연시간이 증가하게 된다. 이러한 문제를 해결하기 위하여 다양한 라우팅 프로토콜이 제안되었다. 그 중에서도 ADOV(Ad-hoc On-demand Distance Vector)는 On-demand 방식의 프로토콜로서 데이터를 전송하는데 필요할 때만 경로를 설정한다. 그러나 최소비용 기반의 경로 산출이 아닌 링크연결 기반의 경로산출로 인한 불필요한 처리 및 지연이 가중된다. 본 논문에서는 최소 비용 기반의 경로 산출 방안인 SPAODV(Shortest Path AODV)를 제안하고 기존의 AODV 경로산출과 비교분석하여 보다 효율적인 경로산출 방안을 제시한다.
기존의 주관식 문제 채점 보조 시스템은 자연어 처리의 어려움으로 인해 채점의 자동화가 어려워 전자우편 등을 통하여 채점자에게 채점 의뢰를 하는 수준이었다. 본 논문에서는 이러한 문제점을 해결하기 위하여 문제 공간을 벡터 공간으로 정의하고 벡터를 구성하는 각 자질간의 상관관계를 고려한 방법을 적용하였다. 먼저 학습자가 답안을 작성할 때 동의어 사용을 한다는 가정하에 출제자가 여러 개의 모범 답안을 작성하고 이들 답안을 말뭉치에 첨가하여 구성한 다음 형태소 분석기를 통하여 색인을 추출한다. 그리고 학습자가 작성한 답안 역시 색인을 추출한 다음, 이들 색인들을 각 자질로 정의한 벡터를 구성한다. 이렇게 구성된 벡터들을 이용하여 답안들간 유사도 측정을 하고, 유사도 범위에 따라 답안을 자동으로 정답과 오답으로 분류하려는 시스템을 제안한다. 170 문항의 주관식 문제을 제안된 방법으로 실험하여, 기존 모델에 비해 성능과 신뢰성 향상을 이룰 수 있었다.
기반 망 없이 네트워크 구축이 이루어지는 애드 혹 네트워크 기술이 다양한 방면에서 활용되고 있다. 애드 혹 네트워크에서 널리 사용하는 AODV(Ad-hoc On Demand Distance Vector)라우팅 알고리즘을 사용한다. 하지만 빈번하게 경로가 변경될 수 있는 상황에서 이러한 라우팅 알고리즘을 사용하게 되면 경로를 생성 및 복구에 사용되는 제어 메시지의 과도한 사용으로 인해 메시지간의 충돌과 손실될 문제가 발생하게 된다. 이 논문에서는 기존의 AODV 라우팅 프로토콜의 경로 생성에 필요한 RREQ, RREP 메시지를 하나의 메시지로 통합하는 라우팅 알고리즘을 제안한다.
Park, Min-Su;Kim, Yong-Min;Park, Chan-Woo;Park, Ki-Tae;Moon, Young-Shik
Annual Conference of KIPS
/
2011.04a
/
pp.372-373
/
2011
인터넷 매체가 급증함에 따라 많은 이들에게 쉽게 노출 되어 유포되고 있는 유해 영상을 검출하기 위해 다양한 분류 방법에 대한 연구들이 이루어지고 있다. 본 논문에서 유해 영상 내의 피부색 영역에서의 Haar-like 특징을 추출하여 유해 영상을 분류하는 방법을 제안한다. 이를 위해, 첫 번째 단계에는 샘플 영상에 대하여 기존에 제안된 피부색 검출 방법을 적용하고, 두 번째 단계에는 검출된 피부색 영역 내의 Haar-like 특징을 추출한다. 각 샘플 영상에서 추출한 특징들은 SVM(Support Vector Machine)을 이용하여 각각 2000 장의 유해, 무해 영상을 학습한다. 학습된 모델은 유해 및 무해 영상이 혼합되어 있는 영상 집합들을 분류하는데 사용한다.
Kim, InKyung;Kim, DaeHee;Heo, Seongsil;Lee, JaeKoo
Annual Conference of KIPS
/
2020.05a
/
pp.547-550
/
2020
노인인구의 급증에 따라 노인 건강에 대한 관심이 증가하였고 노인 낙상을 발견하는 방법에 대한 관심도 함께 대두되기 시작하였다. 낙상 사고의 경우 낙상을 일으킨 원인보다 낙상이 제때 감지되지 않아 발생하는 이후의 상황이 더욱 심각한 결과를 초래한다. 따라서 낙상이 발생했을 때, 바로 낙상을 감지할 수 있는 시스템 구축이 필요하다. 다양한 낙상 검출을 위한 방법이 존재하지만 그 중 착용이 쉽고 원격지에서 관찰 및 관리가 가능한 웨어러블(Wearable) 기기의 센서 데이터를 사용한 낙상 검출을 진행하였다. 본 논문에서는 머신 러닝 모델들을 사용해서 낙상 검출 성능 비교 및 적절한 모델을 제안한다. 기계 학습 기반의 모델인 결정 트리(Decision Tree), 랜덤 포래스트(Random Forest), SVM(Support Vector Machine)을 사용하여 실제 측정된 데이터에 낙상 검출 학습 능력을 정량화하였다. 또한, 모델의 입력 값에 적용한 데이터 분할, 전처리 및 특징 추출 방법을 통해서 효율적인 낙상 검출을 위한 기계학습 관점에서의 타당성을 판단하고자 한다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.351-352
/
2023
컴퓨터공학 분야 개발자를 채용할 때 대다수의 기업에서 일반 면접과는 달리 전공 분야 역량 파악을 위한 컴퓨터공학 기술 면접을 함께 진행한다. 컴퓨터공학 면접자의 기술 면접을 지원하기 위하여 이 논문에서는 컴퓨터공학 핵심 개념에 대한 면접자 답변의 정확도를 코사인 유사도를 이용하여 평가 후 결과를 알려주는 시스템을 제안한다. 제안한 시스템을 이용하면 개발자들의 컴퓨터공학 핵심 개념의 기술 면접 정확도를 향상시킬 수 있을 것으로 기대된다.
International Journal of Computer Science & Network Security
/
v.24
no.4
/
pp.113-118
/
2024
Pursuance Sentiment Analysis on Twitter is difficult then performance it's used for great review. The present be for the reason to the tweet is extremely small with mostly contain slang, emoticon, and hash tag with other tweet words. A feature extraction stands every technique concerning structure and aspect point beginning particular tweets. The subdivision in a aspect vector is an integer that has a commitment on ascribing a supposition class to a tweet. The cycle of feature extraction is to eradicate the exact quality to get better the accurateness of the classifications models. In this manuscript we proposed Term Frequency-Inverse Document Frequency (TF-IDF) method is to secure Principal Component Analysis (PCA) with Naïve Bayes Classifiers. As the classifications process, the work proposed can produce different aspects from wildly valued feature commencing a Twitter dataset.
International Journal of Computer Science & Network Security
/
v.24
no.1
/
pp.107-118
/
2024
With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.
IIt takes a lot of time and needs the workloads to verify the RTL code used in complex system like a nuclear control system which is required high level reliability using simple testbench. UVM has a layered testbench architecture and it is easy to modify the testbench to improve the code coverage. A test vector can be easily constructed in the UVM, since a constrained random test vector can be used even though the construction of testbench using UVM. We showed that the UVM testbench is easier than the verilog testbench for the analysis and improvement of code coverage.
In the past two decades, diverse methods and computer codes for reconstruction of coronal magnetic fields have been developed. Some of them can reproduce a known analytic solution quite well when the magnetic field vector is fully specified by the known solution at the domain boundaries. In practical problems, however, we do not know the boundary conditions in the computational domain except the photospheric boundary, where vector magnetogram data are provided. We have developed a new, simple variational method employing vector potentials. We have tested the computational code based on this method for problems with known solutions and those with actual photospheric data. When solutions are fully given at all boundaries, the accuracy of our method is almost comparable to best performing methods in the market. When magnetic field vectors are only given at the photospheric boundary, our method excels other methods in "figures of merit" devised by Schrijver et al. (2006). Our method is expected to contribute to the real time monitoring of the sun required for future space weather prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.