• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.026 seconds

Detection of Character Emotional Type Based on Classification of Emotional Words at Story (스토리기반 저작물에서 감정어 분류에 기반한 등장인물의 감정 성향 판단)

  • Baek, Yeong Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.131-138
    • /
    • 2013
  • In this paper, I propose and evaluate the method that classifies emotional type of characters with their emotional words. Emotional types are classified as three types such as positive, negative and neutral. They are selected by classification of emotional words that characters speak. I propose the method to extract emotional words based on WordNet, and to represent as emotional vector. WordNet is thesaurus of network structure connected by hypernym, hyponym, synonym, antonym, and so on. Emotion word is extracted by calculating its emotional distance to each emotional category. The number of emotional category is 30. Therefore, emotional vector has 30 levels. When all emotional vectors of some character are accumulated, her/his emotion of a movie can be represented as a emotional vector. Also, thirty emotional categories can be classified as three elements of positive, negative, and neutral. As a result, emotion of some character can be represented by values of three elements. The proposed method was evaluated for 12 characters of four movies. Result of evaluation showed the accuracy of 75%.

A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification (감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.4
    • /
    • pp.499-517
    • /
    • 2008
  • In this paper, we propose an effective emotion feature extraction method for Korean and evaluate their availability in sentiment classification. Korean emotion features are expanded from several representative emotion words and they play an important role in building in an effective sentiment classification system. Firstly, synonym information of English word thesaurus is used to extract effective emotion features and then the extracted English emotion features are translated into Korean. To evaluate the extracted Korean emotion features, we represent each document using the extracted features and classify it using SVM(Support Vector Machine). In experimental results, the sentiment classification system using the extracted Korean emotion features obtained more improved performance(14.1%) than the system using content-words based features which have generally used in common text classification systems.

  • PDF

Fast Mode Decision using Global Disparity Vector for Multi-view Video Coding (다시점 영상 부호화에서 전역 변이 벡터를 이용한 고속 모드 결정)

  • Han, Dong-Hoon;Cho, Suk-Hee;Hur, Nam-Ho;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.328-338
    • /
    • 2008
  • Multi-view video coding (MVC) based on H.264/AVC encodes multiple views efficiently by using a prediction scheme that exploits inter-view correlation among multiple views. However, with the increase of the number of views and use of inter-view prediction among views, total encoding time will be increased in multiview video coding. In this paper, we propose a fast mode decision using both MB(Macroblock)-based region segmentation information corresponding to each view in multiple views and global disparity vector among views in order to reduce encoding time. The proposed method achieves on average 40% reduction of total encoding time with the objective video quality degradation of about 0.04 dB peak signal-to-noise ratio (PSNR) by using joint multi-view video model (JMVM) 4.0 that is the reference software of the multiview video coding standard.

Genetic lesion matching algorithm using medical image (의료영상 이미지를 이용한 유전병변 정합 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho;Han, Chang-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.960-966
    • /
    • 2017
  • In this paper, we proposed an algorithm that can extract lesion by inputting a medical image. Feature points are extracted using SIFT algorithm to extract genetic training of medical image. To increase the intensity of the feature points, the input image and that raining image are matched using vector similarity and the lesion is extracted. The vector similarity match can quickly lead to lesions. Since the direction vector is generated from the local feature point pair, the direction itself only shows the local feature, but it has the advantage of comparing the similarity between the other vectors existing between the two images and expanding to the global feature. The experimental results show that the lesion matching error rate is 1.02% and the processing speed is improved by about 40% compared to the case of not using the feature point intensity information.

A Balancing Method to improve efficiency of Stereo Coding (스테레오 코딩의 효율화를 위한 밸런싱 방법)

  • Kim, Jong-Su;Choi, Jong-Ho;Lee, Kang-Ho;Kim, Tae-Yong;Choi, Jong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2007
  • Imbalances in focus, luminance and color between stereo Pairs could cause disparity vector estimation error and increment of transmission data. If the distribution of errors in residual image is large, it may influence to lowering of compression performance. Therefore, in this paper, we propose an efficient balancing method between stereo pairs to reduce the effect. For this, we registrated stereo images using a FFT based method to consider the pixels in the occluded region, we eliminated the pixels of blocks which has large error of disparity vector estimation in balancing function estimation. The balancing function has estimated using histogram specification, local information of target image and residual image between stereo images. Experiments show that the proposed method is effective in error distribution, PSNR and disparity vector estimation. We expect that our method can be improving compression efficiency in stereo coding system.

  • PDF

Method of Human Detection using Edge Symmetry and Feature Vector (에지 대칭과 특징 벡터를 이용한 사람 검출 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.57-66
    • /
    • 2011
  • In this paper, it is proposed for algorithm to detect human efficiently using a edge symmetry and gradient directional characteristics in realtime by the feature extraction in a single input image. Proposed algorithm is composed of three stages, preprocessing, region partition of human candidates, verification of candidate regions. Here, preprocessing stage is strong the image regardless of the intensity and brightness of surrounding environment, also detects a contour with characteristics of human as considering the shape features size and the condition of human for characteristic of human. And stage for region partition of human candidates has separated the region with edge symmetry for human and size in the detected contour, also divided 1st candidates region with applying the adaboost algorithm. Finally, the candidate region verification stage makes excellent the performance for the false detection by verifying the candidate region using feature vector of a gradient for divided local area and classifier. The results of the simulations, which is applying the proposed algorithm, the processing speed of the proposed algorithms is improved approximately 1.7 times, also, the FNR(False Negative Rate) is confirmed to be better 3% than the conventional algorithm which is a single structure algorithm.

Aerial Video Summarization Approach based on Sensor Operation Mode for Real-time Context Recognition (실시간 상황 인식을 위한 센서 운용 모드 기반 항공 영상 요약 기법)

  • Lee, Jun-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.87-97
    • /
    • 2015
  • An Aerial video summarization is not only the key to effective browsing video within a limited time, but also an embedded cue to efficiently congregative situation awareness acquired by unmanned aerial vehicle. Different with previous works, we utilize sensor operation mode of unmanned aerial vehicle, which is global, local, and focused surveillance mode in order for accurately summarizing the aerial video considering flight and surveillance/reconnaissance environments. In focused mode, we propose the moving-react tracking method which utilizes the partitioning motion vector and spatiotemporal saliency map to detect and track the interest moving object continuously. In our simulation result, the key frames are correctly detected for aerial video summarization according to the sensor operation mode of aerial vehicle and finally, we verify the efficiency of video summarization using the proposed mothed.

Design of an Efficient VLSI Architecture and Verification using FPGA-implementation for HMM(Hidden Markov Model)-based Robust and Real-time Lip Reading (HMM(Hidden Markov Model) 기반의 견고한 실시간 립리딩을 위한 효율적인 VLSI 구조 설계 및 FPGA 구현을 이용한 검증)

  • Lee Chi-Geun;Kim Myung-Hun;Lee Sang-Seol;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.159-167
    • /
    • 2006
  • Lipreading has been suggested as one of the methods to improve the performance of speech recognition in noisy environment. However, existing methods are developed and implemented only in software. This paper suggests a hardware design for real-time lipreading. For real-time processing and feasible implementation, we decompose the lipreading system into three parts; image acquisition module, feature vector extraction module, and recognition module. Image acquisition module capture input image by using CMOS image sensor. The feature vector extraction module extracts feature vector from the input image by using parallel block matching algorithm. The parallel block matching algorithm is coded and simulated for FPGA circuit. Recognition module uses HMM based recognition algorithm. The recognition algorithm is coded and simulated by using DSP chip. The simulation results show that a real-time lipreading system can be implemented in hardware.

  • PDF

Development of a Recognition System of Smile Facial Expression for Smile Treatment Training (웃음 치료 훈련을 위한 웃음 표정 인식 시스템 개발)

  • Li, Yu-Jie;Kang, Sun-Kyung;Kim, Young-Un;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, we proposed a recognition system of smile facial expression for smile treatment training. The proposed system detects face candidate regions by using Haar-like features from camera images. After that, it verifies if the detected face candidate region is a face or non-face by using SVM(Support Vector Machine) classification. For the detected face image, it applies illumination normalization based on histogram matching in order to minimize the effect of illumination change. In the facial expression recognition step, it computes facial feature vector by using PCA(Principal Component Analysis) and recognizes smile expression by using a multilayer perceptron artificial network. The proposed system let the user train smile expression by recognizing the user's smile expression in real-time and displaying the amount of smile expression. Experimental result show that the proposed system improve the correct recognition rate by using face region verification based on SVM and using illumination normalization based on histogram matching.

Upper Body Tracking Using Hierarchical Sample Propagation Method and Pose Recognition (계층적 샘플 생성 방법을 이용한 상체 추적과 포즈 인식)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.63-71
    • /
    • 2008
  • In this paper, we propose a color based hierarchically propagated particle filter that extends the color based particle filter into the articulated upper body tracking. Since color feature is robust to partial occlusion and rotation, the color based particle filter is widely used for object tracking. However, in articulated body tacking, it is not desirable to use the traditional particle filter because the dimension of the state vector usually is high and thus, many samples are required for robust hacking. To overcome this problem, we use a hierarchical tracking method for each body part based on the blown body part. By using a hierarchical tracking method, we can reduce the number of samples for robust tracking in the cluttered environment. Also for human pose recognition, we classify the human pose into eight categories using Support Vector Machine(SVM) according to the angle between upper- arm and fore-arm. Experimental results show that our proposed method is more efficient than the traditional particle filter.