• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.033 seconds

Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm (스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘)

  • Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2018
  • Behavior awareness is a technology that recognizes human behavior through data and can be used in applications such as risk behavior through video surveillance systems. Conventional behavior recognition algorithms have been performed using the 2D camera image device or multi-mode sensor or multi-view or 3D equipment. When two-dimensional data was used, the recognition rate was low in the behavior recognition of the three-dimensional space, and other methods were difficult due to the complicated equipment configuration and the expensive additional equipment. In this paper, we propose a method of recognizing human behavior using only CCTV images without additional equipment using only RGB and depth information. First, the skeleton extraction algorithm is applied to extract points of joints and body parts. We apply the equations to transform the vector including the displacement vector and the relational vector, and study the continuous vector data through the RNN model. As a result of applying the learned model to various data sets and confirming the accuracy of the behavior recognition, the performance similar to that of the existing algorithm using the 3D information can be verified only by the 2D information.

An efficient algorithm for motion estimation in H.264 (H.264를 위한 효율적인 움직임 벡터 추정 알고리즘)

  • Jeong In Cheol;Han Jong Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1669-1676
    • /
    • 2004
  • In H.264, 7 modes {16${\times}$16, 16${\times}$8, 8${\times}$16, 8${\times}$8, 8${\times}$4, 4${\times}$8, 4${\times}$4) are used to enhance the coding efficiency. The motion vector estimation with 7 modes may require huge computing time. In this paper, to speed up the motion vector estimation procedure while the high image quality remains, we propose a motion vector refinement scheme using the temporary motion vector generated with little computation. The proposed estimation process consists of three phases: Mode decision for a 16${\times}$16 macroblock, Composing a temporary motion vector, Refinement of the temporary motion vector. We demonstrate the effectiveness of the proposed method by computer simulation. In the results, the encoding time consumed by the proposed scheme has been reduced significantly while the encoded video quality remains unchanged.

Recognition of Superimposed Patterns with Selective Attention based on SVM (SVM기반의 선택적 주의집중을 이용한 중첩 패턴 인식)

  • Bae, Kyu-Chan;Park, Hyung-Min;Oh, Sang-Hoon;Choi, Youg-Sun;Lee, Soo-Young
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.123-136
    • /
    • 2005
  • We propose a recognition system for superimposed patterns based on selective attention model and SVM which produces better performance than artificial neural network. The proposed selective attention model includes attention layer prior to SVM which affects SVM's input parameters. It also behaves as selective filter. The philosophy behind selective attention model is to find the stopping criteria to stop training and also defines the confidence measure of the selective attention's outcome. Support vector represents the other surrounding sample vectors. The support vector closest to the initial input vector in consideration is chosen. Minimal euclidean distance between the modified input vector based on selective attention and the chosen support vector defines the stopping criteria. It is difficult to define the confidence measure of selective attention if we apply common selective attention model, A new way of doffing the confidence measure can be set under the constraint that each modified input pixel does not cross over the boundary of original input pixel, thus the range of applicable information get increased. This method uses the following information; the Euclidean distance between an input pattern and modified pattern, the output of SVM, the support vector output of hidden neuron that is the closest to the initial input pattern. For the recognition experiment, 45 different combinations of USPS digit data are used. Better recognition performance is seen when selective attention is applied along with SVM than SVM only. Also, the proposed selective attention shows better performance than common selective attention.

Integrated Approach of Multiple Face Detection for Video Surveillance

  • Kim, Tae-Kyun;Lee, Sung-Uk;Lee, Jong-Ha;Kee, Seok-Cheol;Kim, Sang-Ryong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1960-1963
    • /
    • 2003
  • For applications such as video surveillance and human computer interface, we propose an efficiently integrated method to detect and track faces. Various visual cues are combined to the algorithm: motion, skin color, global appearance and facial pattern detection. The ICA (Independent Component Analysis)-SVM (Support Vector Machine based pattern detection is performed on the candidate region extracted by motion, color and global appearance information. Simultaneous execution of detection and short-term tracking also increases the rate and accuracy of detection. Experimental results show that our detection rate is 91% with very few false alarms running at about 4 frames per second for 640 by 480 pixel images on a Pentium IV 1㎓.

  • PDF

Cyberbullying Detection by Sentiment Analysis of Tweets' Contents Written in Arabic in Saudi Arabia Society

  • Almutairi, Amjad Rasmi;Al-Hagery, Muhammad Abdullah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Social media has become a global means of communication in people's lives. Most people are using Twitter for communication purposes and its inappropriate use, which has negative effects on people's lives. One of the widely common misuses of Twitter is cyberbullying. As the resources of dialectal Arabic are rare, so for cyberbullying most people are using dialectal Arabic. For this reason, the ultimate goal of this study is to detect and classify cyberbullying on Twitter in the Arabic context in Saudi Arabia. To help in the detection and classification of tweets, Pointwise Mutual Information (PMI) to generate a lexicon, and Support Vector Machine (SVM) algorithms are used. The evaluation is performed on both methods in terms of the F1-score. However, the F1-score after applying the PMI is 50%, while after the SVM application on the resampling data it is 82%. The analysis of the results shows that the SVM algorithm outperforms better.

Machine Learning Techniques for Diabetic Retinopathy Detection: A Review

  • Rachna Kumari;Sanjeev Kumar;Sunila Godara
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.67-76
    • /
    • 2024
  • Diabetic retinopathy is a threatening complication of diabetes, caused by damaged blood vessels of light sensitive areas of retina. DR leads to total or partial blindness if left untreated. DR does not give any symptoms at early stages so earlier detection of DR is a big challenge for proper treatment of diseases. With advancement of technology various computer-aided diagnostic programs using image processing and machine learning approaches are designed for early detection of DR so that proper treatment can be provided to the patients for preventing its harmful effects. Now a day machine learning techniques are widely applied for image processing. These techniques also provide amazing result in this field also. In this paper we discuss various machine learning and deep learning based techniques developed for automatic detection of Diabetic Retinopathy.

DCT-based Digital Dropout Detection using SVM (SVM을 이용한 DCT 기반의 디지털 드롭아웃 검출)

  • Song, Gihun;Ryu, Byungyong;Kim, Jaemyun;Ahn, Kiok;Chae, Oksam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.190-200
    • /
    • 2014
  • The video-based system of the broadcasters and the video-related institutions have shifted from analogical to digital in worldwide. This migration process can generate a defect, digital dropout, in the quality of the contents. Moreover, there are limited researches focused on these kind of defects and those related have limitations. For that reason, we are proposing a new method for feature extraction emphasizing in the peculiar block pattern of digital dropout based on discrete cosine transform (DCT). For classification of error block, we utilize support vector machine (SVM) which can manage feature vectors efficiently. Further, the proposed method overcome the limitation of the previous one using continuity of frame by frame. It is using only the information of a single frame and works better even in the presence of fast moving objects, without the necessity of specific model or parameter estimation. Therefore, this approach is capable of detecting digital dropout only with minimal complexity.

Fast Multiresolution Motion Estimation in Wavelet Transform Domain Using Block Classification and HPAME (블록 분류와 반화소 단위 움직임 추정을 이용한 웨이브릿 변환 영역에서의 계층적 고속 움직임 추정 방법)

  • Gwon, Seong-Geun;Lee, Seok-Hwan;Ban, Seung-Won;Lee, Geon-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2002
  • In this paper, we proposed a fast multi-resolution motion estimation(MRME) algorithm. This algorithm exploits the half-pixel accuracy motion estimation(HPAME) for exact motion vectors in the baseband and block classification for the reduction of bit amounts and computational loads. Generally, as the motion vector in the baseband are used as initial motion vector in the high frequency subbands, it has crucial effect on quality of the motion compensated image. For this reason, we exploit HPAME in the motion estimation for the baseband. But HPAME requires additional bit and computational loads so that we use block classification for the selective motion estimation in the high frequency subbands to compensate these problems. In result, we could reduce the bit rate and computational load at the similar image quality with conventional MRME. The superiority of the proposed algorithm was confirmed by the computer simulation.

Customer Classification System Using Incrementally Ensemble SVM (점진적 앙상블 SVM을 이용한 고객 분류 시스템)

  • Park, Sang-Ho;Lee, Jong-In;Park, Sun;Kang, Yun-Hee;Lee, Ju-Hong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.190-192
    • /
    • 2003
  • 소비자의 신용 대출 규모가 점차 증가하면서 기업에서 고객의 신용 등급에 의한 정확한 고객 분류를 필요로 하고 있다 이를 위해 판별 분석과 신경망의 역전파(BP: Back Propagation)를 이용한 고객 분류 시스템이 연구되었다. 그러나, 판별 분석을 사용한 방법은 불규칙한 신용 거래의 성향을 보이는 비정규 분포의 고객 데이터의 영향으로 여러 개의 판별 함수와 판별점이 존재하여 분류 정확도가 떨어지는 단점이 있다. 신경망을 이용한 방법은 불규칙한 신용 거래의 성향을 보이는 고객 데이터에 의해서, 지역 최소점(Local Minima)에 빠져 최대의 분류 정확률을 보이는 분류자를 얻지 못하는 경우가 발생할 수 있다. 본 논문에서는 이러한 기존 연구의 분류 정확률을 저하시키는 단점을 해결하기 위해 SVM(Support Vector Machine)을 사용하여 고객의 신용 등급을 분류하는 방법을 제안한다. SVM은 SV(Support Vector)의 수에 의해서 학습 성능이 좌우되므로, 불규칙한 거래 성향을 보이는 고객에 대해서도 높은 차원으로의 매핑을 통하여, 효과적으로 학습시킬 수 있어 분류의 정확도를 높일 수 있다 하지만, SVM은 근사화 알고리즘(Approximation Algorithms)을 이용하므로 분류 정확도가 이론적인 성능에 미치지 못한다. 따라서, 본 논문은 점진적 앙상블 SVM을 사용하여, 기존의 고객 분류 시스템의 문제점을 해결하고 실제적으로 SVM의 분류 정확률을 높인다. 실험 결과는 점진적 앙상블 SVM을 이용한 방법의 정확성이 기존의 방법보다 높다는 것을 보여준다.

  • PDF

Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling (음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출)

  • Jang, Won-Chul;Seo, Jun-Sang;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes a fault detection method for low-speed rolling element bearings of an induction motor using acoustic emission signals and histogram modeling. The proposed method performs envelop modeling of the histogram of normalized fault signals. It then extracts and selects significant features of each fault using partial autocorrelation coefficients and distance evaluation technique, respectively. Finally, using the extracted features as inputs, the support vector regression (SVR) classifies bearing's inner, outer, and roller faults. To obtain optimal classification performance, we evaluate the proposed method with varying an adjustable parameter of the Gaussian radial basis function of SVR from 0.01 to 1.0 and the number of features from 2 to 150. Experimental results show that the proposed fault identification method using 0.64-0.65 of the adjustable parameter and 75 features achieves 91% in classification performance and outperforms conventional fault diagnosis methods as well.