• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.026 seconds

Applying of SOM for Automatic Recognition of Tension and Relaxation (긴장과 이완상태의 자동인식을 위한 SOM의 적용)

  • Jeong, Chan-Soon;Ham, Jun-Seok;Ko, Il-Ju;Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.65-74
    • /
    • 2010
  • We propose a system that automatically recognizes the tense or relaxed condition of scrolling-shooting game subject that plays. Existing study compares the changed values of source of stimulation to the player by suggesting the source, and thus involves limitation in automatic classification. This study applies SOM of unsupervised learning for automatic classification and recognition of player's condition change. Application of SOM for automatic recognition of tense and relaxed condition is composed of two steps. First, ECG measurement and analysis, is to extract characteristic vector through HRV analysis by measuring ECG after having the player play the game. Secondly, SOM learning and recognition, is to classify and recognize the tense and relaxed conditions of player through SOM learning of the input vectors of heart beat signals that the characteristic extracted. Experiment results are divided into three groups. The first is HRV frequency change and the second the SOM learning results of heart beat signal. The third is the analysis of match rate to identify SOM learning performance. As a result of matching the LF/HF ratio of HRV frequency analysis to the distance of winner neuron of SOM based on 1.5, a match rate of 72% performance in average was shown.

A Study of Prevention Model the Spread of Phishing Attack for Protection the Medical Information (의료정보 보호를 위한 피싱공격 확산방지모델 연구)

  • Choi, Kyong-Ho;Chung, Kyung-Yong;Shin, Dong-Kun
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.273-277
    • /
    • 2013
  • Phishing attacks have been implemented in smarter, more advanced ways with the passage of time. Hackers use intelligent phishing attacks to take over computers and to penetrate internal networks in major organizations. So, in this paper, a model for a prevention of phishing attack spread is conceptual designed in order to protect internal users and sensitive or important information from sophisticated phishing attacks. Internal users simultaneously utilize both external web and organizational mail services. And hackers can take the both side equally as a vector. Thus, packets in each service must be monitored and stored to recognize threatening elements from both sides. The model designed in this paper extends the mail server based security structure used in conventional studies for the protection of Internet mail services accessed by intranet users. This model can build a list of phishing sites as the system checks e-mails compared to that of the method that directly intercepts accesses to phishing sites using a proxy server, so it represents no standby time for request and response processes.

Predicting Stock Liquidity by Using Ensemble Data Mining Methods

  • Bae, Eun Chan;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.9-19
    • /
    • 2016
  • In finance literature, stock liquidity showing how stocks can be cashed out in the market has received rich attentions from both academicians and practitioners. The reasons are plenty. First, it is known that stock liquidity affects significantly asset pricing. Second, macroeconomic announcements influence liquidity in the stock market. Therefore, stock liquidity itself affects investors' decision and managers' decision as well. Though there exist a great deal of literature about stock liquidity in finance literature, it is quite clear that there are no studies attempting to investigate the stock liquidity issue as one of decision making problems. In finance literature, most of stock liquidity studies had dealt with limited views such as how much it influences stock price, which variables are associated with describing the stock liquidity significantly, etc. However, this paper posits that stock liquidity issue may become a serious decision-making problem, and then be handled by using data mining techniques to estimate its future extent with statistical validity. In this sense, we collected financial data set from a number of manufacturing companies listed in KRX (Korea Exchange) during the period of 2010 to 2013. The reason why we selected dataset from 2010 was to avoid the after-shocks of financial crisis that occurred in 2008. We used Fn-GuidPro system to gather total 5,700 financial data set. Stock liquidity measure was computed by the procedures proposed by Amihud (2002) which is known to show best metrics for showing relationship with daily return. We applied five data mining techniques (or classifiers) such as Bayesian network, support vector machine (SVM), decision tree, neural network, and ensemble method. Bayesian networks include GBN (General Bayesian Network), NBN (Naive BN), TAN (Tree Augmented NBN). Decision tree uses CART and C4.5. Regression result was used as a benchmarking performance. Ensemble method uses two types-integration of two classifiers, and three classifiers. Ensemble method is based on voting for the sake of integrating classifiers. Among the single classifiers, CART showed best performance with 48.2%, compared with 37.18% by regression. Among the ensemble methods, the result from integrating TAN, CART, and SVM was best with 49.25%. Through the additional analysis in individual industries, those relatively stabilized industries like electronic appliances, wholesale & retailing, woods, leather-bags-shoes showed better performance over 50%.

Research on Text Classification of Research Reports using Korea National Science and Technology Standards Classification Codes (국가 과학기술 표준분류 체계 기반 연구보고서 문서의 자동 분류 연구)

  • Choi, Jong-Yun;Hahn, Hyuk;Jung, Yuchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.169-177
    • /
    • 2020
  • In South Korea, the results of R&D in science and technology are submitted to the National Science and Technology Information Service (NTIS) in reports that have Korea national science and technology standard classification codes (K-NSCC). However, considering there are more than 2000 sub-categories, it is non-trivial to choose correct classification codes without a clear understanding of the K-NSCC. In addition, there are few cases of automatic document classification research based on the K-NSCC, and there are no training data in the public domain. To the best of our knowledge, this study is the first attempt to build a highly performing K-NSCC classification system based on NTIS report meta-information from the last five years (2013-2017). To this end, about 210 mid-level categories were selected, and we conducted preprocessing considering the characteristics of research report metadata. More specifically, we propose a convolutional neural network (CNN) technique using only task names and keywords, which are the most influential fields. The proposed model is compared with several machine learning methods (e.g., the linear support vector classifier, CNN, gated recurrent unit, etc.) that show good performance in text classification, and that have a performance advantage of 1% to 7% based on a top-three F1 score.

Feature Selection to Predict Very Short-term Heavy Rainfall Based on Differential Evolution (미분진화 기반의 초단기 호우예측을 위한 특징 선택)

  • Seo, Jae-Hyun;Lee, Yong Hee;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.706-714
    • /
    • 2012
  • The Korea Meteorological Administration provided the recent four-years records of weather dataset for our very short-term heavy rainfall prediction. We divided the dataset into three parts: train, validation and test set. Through feature selection, we select only important features among 72 features to avoid significant increase of solution space that arises when growing exponentially with the dimensionality. We used a differential evolution algorithm and two classifiers as the fitness function of evolutionary computation to select more accurate feature subset. One of the classifiers is Support Vector Machine (SVM) that shows high performance, and the other is k-Nearest Neighbor (k-NN) that is fast in general. The test results of SVM were more prominent than those of k-NN in our experiments. Also we processed the weather data using undersampling and normalization techniques. The test results of our differential evolution algorithm performed about five times better than those using all features and about 1.36 times better than those using a genetic algorithm, which is the best known. Running times when using a genetic algorithm were about twenty times longer than those when using a differential evolution algorithm.

A Study on Flow Distribution in a Clean Room with Multiple Exits (다수의 출구를 가지는 크린룸 내부의 기류분포에 관한 연구)

  • Lee, Jae-Heon;Lee, Sie-Un;Kim, Sukhyun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.418-425
    • /
    • 1988
  • Since conventional computer program is workable only with velocity boundary condition, in practical fluid passage such as clean room which usually have wide inlets and outlets, it is not easy to measure velocity itself because of its vector property. Furthermore a certain assumption of velocity at boundaries may lead to physically unreasonable results. From this motivation, we have developed a computer program to predict whole flow field imposed on pressure-based boundary condition which can be measured by relatively simple method. The only additional velocity boundary condition that should be imposed on to make the problem unique, are no slip condition at all walls and zero cross stream velocity at inlet. The result of present study was compared with that by Bernoulli equation being used practically. They were coincident well each other within 5%, therefore the validity of the present method is proved. In the present work, the flow field in a clean room subject to pressure-based boundary conditions at an inlet and two exits was predicted numerically. The pressure difference between the inlet and the left exit which keeps relatively low pressure among two exits is fixed as 150[Pa] and the pressure at the right exit is varied from zero to 150[Pa] by the increment of 25[Pa]. For each cases the flow characteristics in the clean room, the velocity profile at the inlet, and the flow rate through the two exits was predicted. The flow rate through the right exit imposed on relatively higher pressure than the left exit decreased linearly according to the increase of pressure of the right exit. When the pressure of the right exit is increased enough to cause back flow at the exit, the flow rate is rapidly decreased.

  • PDF

Analysis of Mashup Performances based on Vector Layer of Various GeoWeb 2.0 Platform Open APIs (다양한 공간정보 웹 2.0 플랫폼 Open API의 벡터 레이어 기반 매쉬업 성능 분석)

  • Kang, Jinwon;Kim, Min-soo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.4
    • /
    • pp.745-754
    • /
    • 2019
  • As GeoWeb 2.0 technologies are widely used, various kinds of services that mashup spatial data and user data are being developed. In particular, various spatial information platforms such as Google Maps, OpenStreetMap, Daum Map, Naver Map, olleh Map, and VWorld based on GeoWeb 2.0 technologies support mashup service. The mashup service which is supported through the Open APIs of the platforms, provides various kinds of spatial data such as 2D map, 3D map, and aerial image. Also, application fields using the mashup service are greatly expanded. Recently, as user data for mashup have been greatly increased, there was a problem in mashup performance. However, the research on the mashup performance improvement is currently insufficient, even the research on the mashup performance comparison of various platforms has not been performed. In this paper, we perform comparative analysis of the mashup performance for large amounts of user data and spatial data using various spatial information platforms available in Korea. Specifically, we propose two performance analysis indexes of mashup time and user interaction time in order to analyze the mashup performance efficiently. Also, we implement a system for the performance analysis. Finally, from the performance analysis result, we propose a spatial information platform that can be efficiently applied to cases when user data increases greatly and user interaction occurs frequently.

Progressive occupancy network for 3D reconstruction (3차원 형상 복원을 위한 점진적 점유 예측 네트워크)

  • Kim, Yonggyu;Kim, Duksu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.65-74
    • /
    • 2021
  • 3D reconstruction means that reconstructing the 3D shape of the object in an image and a video. We proposed a progressive occupancy network architecture that can recover not only the overall shape of the object but also the local details. Unlike the original occupancy network, which uses a feature vector embedding information of the whole image, we extract and utilize the different levels of image features depending on the receptive field size. We also propose a novel network architecture that applies the image features sequentially to the decoder blocks in the decoder and improves the quality of the reconstructed 3D shape progressively. In addition, we design a novel decoder block structure that combines the different levels of image features properly and uses them for updating the input point feature. We trained our progressive occupancy network with ShapeNet. We compare its representation power with two prior methods, including prior occupancy network(ONet) and the recent work(DISN) that used different levels of image features like ours. From the perspective of evaluation metrics, our network shows better performance than ONet for all the metrics, and it achieved a little better or a compatible score with DISN. For visualization results, we found that our method successfully reconstructs the local details that ONet misses. Also, compare with DISN that fails to reconstruct the thin parts or occluded parts of the object, our progressive occupancy network successfully catches the parts. These results validate the usefulness of the proposed network architecture.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.

EEG Feature Engineering for Machine Learning-Based CPAP Titration Optimization in Obstructive Sleep Apnea

  • Juhyeong Kang;Yeojin Kim;Jiseon Yang;Seungwon Chung;Sungeun Hwang;Uran Oh;Hyang Woon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.89-103
    • /
    • 2023
  • Obstructive sleep apnea (OSA) is one of the most prevalent sleep disorders that can lead to serious consequences, including hypertension and/or cardiovascular diseases, if not treated promptly. Continuous positive airway pressure (CPAP) is widely recognized as the most effective treatment for OSA, which needs the proper titration of airway pressure to achieve the most effective treatment results. However, the process of CPAP titration can be time-consuming and cumbersome. There is a growing importance in predicting personalized CPAP pressure before CPAP treatment. The primary objective of this study was to optimize the CPAP titration process for obstructive sleep apnea patients through EEG feature engineering with machine learning techniques. We aimed to identify and utilize the most critical EEG features to forecast key OSA predictive indicators, ultimately facilitating more precise and personalized CPAP treatment strategies. Here, we analyzed 126 OSA patients' PSG datasets before and after the CPAP treatment. We extracted 29 EEG features to predict the features that have high importance on the OSA prediction index which are AHI and SpO2 by applying the Shapley Additive exPlanation (SHAP) method. Through extracted EEG features, we confirmed the six EEG features that had high importance in predicting AHI and SpO2 using XGBoost, Support Vector Machine regression, and Random Forest Regression. By utilizing the predictive capabilities of EEG-derived features for AHI and SpO2, we can better understand and evaluate the condition of patients undergoing CPAP treatment. The ability to predict these key indicators accurately provides more immediate insight into the patient's sleep quality and potential disturbances. This not only ensures the efficiency of the diagnostic process but also provides more tailored and effective treatment approach. Consequently, the integration of EEG analysis into the sleep study protocol has the potential to revolutionize sleep diagnostics, offering a time-saving, and ultimately more effective evaluation for patients with sleep-related disorders.