• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.042 seconds

Macroblock-based Adaptive Interpolation Filter Method Using New Filter Selection Criterion in H.264/AVC (H.264/AVC에서 새로운 필터 선택 기준을 이용한 매크로 블록 기반 적응 보간 필터 방법)

  • Yoon, Kun-Su;Moon, Yong-Ho;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.312-320
    • /
    • 2008
  • The macroblock-based adaptive interpolation filter method has been considered to be able to achieve high coding efficiency in H.264/AVC. In this method, although the filter selection criterion considered in terms of rate and distortion have showed a good performance, it still leaves room for improvement. To improve high coding efficiency better than conventional method, we propose a new filter selection criterion which considers two bit rates, motion vector and prediction error, and reconstruction error. In addition, the algorithm for reducing the overhead of transmitting the selected filter information is presented. Experimental results show that the proposed method significantly improves the coding efficiency compared to ones using conventional criterion. It leads to about a 5.19% (1 reference frame) and 5.14% (5 reference frames) bit rate savings on average compared to H.264/AVC, respectively.

An Intelligent Self Health Diagnosis System using FCM Algorithm and Fuzzy Membership Degree (FCM 알고리즘과 퍼지 소속도를 이용한 지능형 자가 진단 시스템)

  • Kim, Kwang-Baek;Kim, Ju-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • This paper shows an intelligent disease diagnosis system for public. Our system deals with 30 diseases and their typical symptoms selected based on the report from Ministry of Health and Welfare, Korea. Technically, the system uses a modified FCM algorithm for clustering diseases and the input vector consists of the result of user-selected questionnaires. The modified FCM algorithm improves the quality of clusters by applying symmetrically measure based on the fuzzy theory so that the clusters are relatively sensitive to the shape of the pattern distribution. Furthermore, we extract the highest 5 diseases only related to the user-selected questionnaires based on the fuzzy membership function between questionnaires and diseases in order to avoid diagnosing unrelated disease.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • Kim, Tae-Woo;Kang, Yong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.53-60
    • /
    • 2009
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking; and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • 박호식;정연숙;손동주;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.603-607
    • /
    • 2004
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

An Iterative Side Information Refinement Based on Block-Adaptive Search in Distributed Video Coding (분산 비디오 부호화에서 블록별 적응적 탐색에 기초한 반복적인 보조정보 보정기법)

  • Kim, Jin-Soo;Yun, Mong-Han;Kim, Jae-Gon;Seo, Kwang-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.355-363
    • /
    • 2011
  • Recently, as one of several methods to improve the performance of DVC(Distributed Video Coding) system, many research works are focusing on the iterative refinement of side information. Most of the conventional techniques are mainly based on the relationship between the reconstruction level and side information, or the vector median filtering of motion vectors, but, their performance improvements are restricted. In order to overcome the performance limit of the conventional schemes, in this paper, a side information generation scheme is designed by measuring the block-cost estimation. Then, by adaptively selecting the compensation mode using the received bit-plane information, we propose a block-adaptive iterative refinement which is efficient for non-symmetric moving objects. Computer simulations show that, by using the proposed refinement method, the performance can be improved up to 0.2 dB in rate-distortion.

Image Segmentation of Lung Parenchyma using Improved Deformable Model on Chest Computed Tomography (개선된 가변형 능동모델을 이용한 흉부 컴퓨터단층영상에서 폐 실질의 분할)

  • Kim, Chang-Soo;Choi, Seok-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2163-2170
    • /
    • 2009
  • We present an automated, energy minimized-based method for Lung parenchyma segmenting Chest Computed Tomography(CT) datasets. Deformable model is used for energy minimized segmentation. Quantitative knowledge including expected volume, shape of Chest CT provides more feature constrain to diagnosis or surgery operation planning. Segmentation subdivides an lung image into its consistent regions or objects. Depends on energy-minimizing, the level detail image of subdivision is carried. Segmentation should stop when the objects or region of interest in an application have been detected. The deformable model that has attracted the most attention to date is popularly known as snakes. Snakes or deformable contour models represent a special case of the general multidimensional deformable model theory. This is used extensively in computer vision and image processing applications, particularly to locate object boundaries, in the mean time a new type of external force for deformable models, called gradient vector flow(GVF) was introduced by Xu. Our proposed algorithm of deformable model is new external energy of GVF for exact segmentation. In this paper, Clinical material for experiments shows better results of proposal algorithm in Lung parenchyma segmentation on Chest CT.

Outsourced Storage Auditing Scheme using Coefficient Matrix (계수행렬을 이용한 외부 스토리지 무결성 검증 기법)

  • Eun, Hasoo;Oh, Heekuck;Kim, Sangjin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.11
    • /
    • pp.483-488
    • /
    • 2013
  • Users can access their data anywhere, at any time by using outsourced storage. But they cannot know how service provider manage the data. Even user cannot know when data damaged. To solve these problems, the outsourced storage auditing schemes has been proposed. Most proposed schemes are based on Homomorphic Verifiable Tags. But it has computational efficiency limitation because data used to exponent. In this paper, we propose a novel approach to outsourced storage auditing scheme using coefficient matrix. In the proposed scheme, data used to auditing by coefficient matrix form. Auditing procedures are proceed as solving the linear simultaneous equation. The auditor can audit easily by solving the equation using solution vector. The auditor can audit the n size data using sqrt(n) size data through out proposed scheme.

Mesh Simplification Algorithm Using Differential Error Metric (미분 오차 척도를 이용한 메쉬 간략화 알고리즘)

  • 김수균;김선정;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.288-296
    • /
    • 2004
  • This paper proposes a new mesh simplification algorithm using differential error metric. Many simplification algorithms make use of a distance error metric, but it is hard to measure an accurate geometric error for the high-curvature region even though it has a small distance error measured in distance error metric. This paper proposes a new differential error metric that results in unifying a distance metric and its first and second order differentials, which become tangent vector and curvature metric. Since discrete surfaces may be considered as piecewise linear approximation of unknown smooth surfaces, theses differentials can be estimated and we can construct new concept of differential error metric for discrete surfaces with them. For our simplification algorithm based on iterative edge collapses, this differential error metric can assign the new vertex position maintaining the geometry of an original appearance. In this paper, we clearly show that our simplified results have better quality and smaller geometry error than others.

Continuous Multiple Prediction of Stream Data Based on Hierarchical Temporal Memory Network (계층형 시간적 메모리 네트워크를 기반으로 한 스트림 데이터의 연속 다중 예측)

  • Han, Chang-Yeong;Kim, Sung-Jin;Kang, Hyun-Syug
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Stream data shows a sequence of values changing continuously over time. Due to the nature of stream data, its trend is continuously changing according to various time intervals. Therefore the prediction of stream data must be carried out simultaneously with respect to multiple intervals, i.e. Continuous Multiple Prediction(CMP). In this paper, we propose a Continuous Integrated Hierarchical Temporal Memory (CIHTM) network for CMP based on the Hierarchical Temporal Memory (HTM) model which is a neocortex leraning algorithm. To develop the CIHTM network, we created three kinds of new modules: Shift Vector Senor, Spatio-Temporal Classifier and Multiple Integrator. And also we developed learning and inferencing algorithm of CIHTM network.

Souce Code Identification Using Deep Neural Network (심층신경망을 이용한 소스 코드 원작자 식별)

  • Rhim, Jisu;Abuhmed, Tamer
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.9
    • /
    • pp.373-378
    • /
    • 2019
  • Since many programming sources are open online, problems with reckless plagiarism and copyrights are occurring. Among them, source codes produced by repeated authors may have unique fingerprints due to their programming characteristics. This paper identifies each author by learning from a Google Code Jam program source using deep neural network. In this case, the original creator's source is to be vectored using a pre-processing instrument such as predictive-based vector or frequency-based approach, TF-IDF, etc. and to identify the original program source by learning by using a deep neural network. In addition a language-independent learning system was constructed using a pre-processing machine and compared with other existing learning methods. Among them, models using TF-IDF and in-depth neural networks were found to perform better than those using other pre-processing or other learning methods.