• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.026 seconds

Hand Tracking and Hand Gesture Recognition for Human Computer Interaction

  • Bai, Yu;Park, Sang-Yun;Kim, Yun-Sik;Jeong, In-Gab;Ok, Soo-Yol;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.182-193
    • /
    • 2011
  • The aim of this paper is to present the methodology for hand tracking and hand gesture recognition. The detected hand and gesture can be used to implement the non-contact mouse. We had developed a MP3 player using this technology controlling the computer instead of mouse. In this algorithm, we first do a pre-processing to every frame which including lighting compensation and background filtration to reducing the adverse impact on correctness of hand tracking and hand gesture recognition. Secondly, YCbCr skin-color likelihood algorithm is used to detecting the hand area. Then, we used Continuously Adaptive Mean Shift (CAMSHIFT) algorithm to tracking hand. As the formula-based region of interest is square, the hand is closer to rectangular. We have improved the formula of the search window to get a much suitable search window for hand. And then, Support Vector Machines (SVM) algorithm is used for hand gesture recognition. For training the system, we collected 1500 hand gesture pictures of 5 hand gestures. Finally we have performed extensive experiment on a Windows XP system to evaluate the efficiency of the proposed scheme. The hand tracking correct rate is 96% and the hand gestures average correct rate is 95%.

HMM-based Speech Recognition using FSVQ, Fuzzy Concept and Doubly Spectral Feature (FSVQ, 퍼지 개념 및 이중 스펙트럼 특징을 이용한 HMM에 기초를 둔 음성 인식)

  • 정의봉
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.4
    • /
    • pp.491-502
    • /
    • 2004
  • In this paper, we propose a HMM model using FSVQ(First Section VQ), fuzzy theory and doubly spectral feature, as study on the isolated word recognition system of speaker-independent. In the proposed paper, LPC cepstrum coefficients and regression coefficients of LPC cepstrum as doubly spectral feature be used. And, training data are divided several section and first section is generated codebook of VQ, and then is obtained multi-observation sequences by order of large propabilistic values based on fuzzy nile from the codebook of the first section. Thereafter, this observation sequences of first section is trained and is recognized a word to be obtained highest probaility by same concept. Besides the speech recognition experiments of proposed method, we experiment the other methods under the equivalent environment of data and conditions. In the whole experiment, it is proved that the proposed method is superior to the others in recognition rate.

  • PDF

A Model for Water Droplet using Metaball in the Gravitation Force (메타볼을 이용한 중력장내의 물방울 모델)

  • Yu, Young Jung;Jeong, Ho Youl;Cho, Hwan Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.79-88
    • /
    • 1998
  • Till now there are several rendering models for water and simulating other fluids and their dynamics. Especially in order to generate a curved surface of flexible objects such as liquid and snow, the implicit metaball formulation is widely used in favor of its simplicity and flexibility. This paper proposes one excellent method for generating water droplets, which would be deformed in gravitation field. In previous works, a water droplet was simply represented by approximated curved surfaces of a symmetric metaball. Thus the final result of the rendered water droplet was far from a realistic droplet, because they do not consider the gravitational effect in droplets. We propose a new metaball model for rendering water droplets placed on an arbitrary surface considering the gravitation and friction between droplet and plate. Our new metaball model uses a new vector field isosurface function to control the basic scalar metaball with respect to the norm of gravitational force. In several experiments, we could render a photo-realistic water droplets with natural-looking shadows by applying ray-tracing.

  • PDF

A New Block-based Gradient Descent Search Algorithm for a Fast Block Matching (고속 블록 정합을 위한 새로운 블록 기반 경사 하강 탐색 알고리즘)

  • 곽성근
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.10
    • /
    • pp.731-740
    • /
    • 2003
  • Since motion estimation remove the redundant data to employ the temporal correlations between adjacent frames in a video sequence, it plays an important role in digital video coding. And in the block matching algorithm, search patterns of different shapes or sizes and the distribution of motion vectors have a large impact on both the searching speed and the image quality. In this paper, we propose a new fast block matching algorithm using the small-cross search pattern and the block-based gradient descent search pattern. Our algorithm first finds the motion vectors that are close to the center of search window using the small-cross search pattern, and then quickly finds the other motion vectors that are not close to the center of search window using the block-based gradient descent search pattern. Through experiments, compared with the block-based gradient descent search algorithm(BBGDS), the proposed search algorithm improves as high as 26-40% in terms of average number of search point per motion vector estimation.

  • PDF

Motor Imagery EEG Classification Method using EMD and FFT (EMD와 FFT를 이용한 동작 상상 EEG 분류 기법)

  • Lee, David;Lee, Hee-Jae;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1050-1057
    • /
    • 2014
  • Electroencephalogram (EEG)-based brain-computer interfaces (BCI) can be used for a number of purposes in a variety of industries, such as to replace body parts like hands and feet or to improve user convenience. In this paper, we propose a method to decompose and extract motor imagery EEG signal using Empirical Mode Decomposition (EMD) and Fast Fourier Transforms (FFT). The EEG signal classification consists of the following three steps. First, during signal decomposition, the EMD is used to generate Intrinsic Mode Functions (IMFs) from the EEG signal. Then during feature extraction, the power spectral density (PSD) is used to identify the frequency band of the IMFs generated. The FFT is used to extract the features for motor imagery from an IMF that includes mu rhythm. Finally, during classification, the Support Vector Machine (SVM) is used to classify the features of the motor imagery EEG signal. 10-fold cross-validation was then used to estimate the generalization capability of the given classifier., and the results show that the proposed method has an accuracy of 84.50% which is higher than that of other methods.

Real Time Gaze Discrimination for Human Computer Interaction (휴먼 컴퓨터 인터페이스를 위한 실시간 시선 식별)

  • Park Ho sik;Bae Cheol soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.125-132
    • /
    • 2005
  • This paper describes a computer vision system based on active IR illumination for real-time gaze discrimination system. Unlike most of the existing gaze discrimination techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze discrimination system can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using generalized regression neural networks (GRNNs). With GRNNs, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Futhermore, the mapping function can generalize to other individuals not used in the training. To further improve the gaze estimation accuracy, we employ a reclassification scheme that deals with the classes that tend to be misclassified. This leads to a 10% improvement in classification error. The angular gaze accuracy is about 5°horizontally and 8°vertically. The effectiveness of our gaze tracker is demonstrated by experiments that involve gaze-contingent interactive graphic display.

Real Time Gaze Discrimination for Computer Interface (컴퓨터 인터페이스를 위한 실시간 시선 식별)

  • Hwang, Suen-Ki;Kim, Moon-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2010
  • This paper describes a computer vision system based on active IR illumination for real-time gaze discrimination system. Unlike most of the existing gaze discrimination techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze discrimination system can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using generalized regression neural networks (GRNNs). With GRNNs, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. To further improve the gaze estimation accuracy, we employ a reclassification scheme that deals with the classes that tend to be misclassified. This leads to a 10% improvement in classification error. The angular gaze accuracy is about $5^{\circ}$horizontally and $8^{\circ}$vertically. The effectiveness of our gaze tracker is demonstrated by experiments that involve gaze-contingent interactive graphic display.

  • PDF

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

Two-Dimensional Face Recognition Algorithm using Outlet Information based on the FDP (FDP 정보를 이용한 2차원 얼굴영상정보 복원기법)

  • Jo, Nam-Chul;Lee, Ki-Dong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.333-338
    • /
    • 2004
  • Today CCTV can be come across easily in public institutions, banks and etc. These CCTV plays very important roles for preventing many kinds of crimes and resolving those crime affairs. But in the case of recording a image of a specific person far from the CCTV, the original image needs to be enlarged and recovered in order to identify the person more obviously. The interpolation is usually used for the enlargement and recovery of the image. This interpolation has a certain limitation. As the magnification of enlargement is getting bigger, the quality of the original image can be worse than before. This paper uses FDP(Face Definition Parameter) of MPEG-4 SNHC FBA group and introduces a new algorithm that the face outline of a face image using Vector Descriptor based on the FDP makes possible better image recovery than the known methods until now.

  • PDF

A Fast Motion Estimation Algorithm with Adjustable Searching Area (적응 탐색 영역을 가지는 고속 움직임 추정 알고리즘)

  • Jeong, Seong-Gyu;Jo, Gyeong-Rok;Jeong, Cha-Geun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.966-974
    • /
    • 1999
  • 완전 탐색 블록 정합 알고리즘(FBMA)은 다양한 움직임 추정 알고리즘 중 최상의 움직임 추정을 할 수 있으나, 방대한 계산량이 실시간 처리의 적용에 장애 요소이다. 본 논문에서는 완전 탐색 블록 정합 알고리즘에 비해 더 낮은 계산량과 유사한 화질을 가지는 새로운 고속 움직임 추정 알고리즘을 제안한다. 제안한 방법에서는 공간적인 상관성을 이용함으로써 적절한 탐색 영역의 크기를 예측할 수 있다. 현재 블록의 움직임 추정을 위하여 이웃 블록이 가지고 있는 움직임과 탐색 영역의 크기를 이용하여 현재 블록의 탐색 영역을 적응적으로 변화시키는 방법이다. 이 예측값으로 현재 블록의 탐색 영역 크기를 결정한 후, FBMA와 같이 이 영역 안의 모든 화소점들에 대하여 현재 블록을 정합하여 움직임 벡터를 추정한다. 컴퓨터 모의 실험 결과 계산량 측면에서 제안 방법이 완전 탐색 블록 정합 알고리즘보다 50%정도 감소하였으며, PSNR 측면에서는 0.08dB에서 1.29dB 정도 감소하는 좋은 결과를 얻었다.Abstract Full search block-matching algorithm (FBMA) was shown to be able to produce the best motion compensated images among various motion estimation algorithms. However, huge computational load inhibits its applicability in real applications. A new motion estimation algorithm with lower computational complexity and good image quality when compared to the FBMA will be presented in this paper. In the proposed method, The appropriate search area can be predicted by using the temporal correlation between neighbouring blocks. For motion estimation of the current block, it is the method changing adjustably search area of current block by using motion and search area size of the neighbouring block. After deciding search area size of the current block with this predicted value, we estimate motion vector that matching current block like the FBMA for every pixel in this area. By the computer simulation the computation amount of the proposed method can be greatly decreased about 50% than that of the FBMA and the good result of the PSNR can be attained.