• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.03 seconds

Unified Design Methodology and Verification Platform for Giga-scale System on Chip (기가 스케일 SoC를 위한 통합 설계 방법론 및 검증 플랫폼)

  • Kim, Jeong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.106-114
    • /
    • 2010
  • We proposed an unified design methodology and verification platform for giga-scale System on Chip (SoC). According to the growth of VLSI integration, the existing RTL design methodology has a limitation of a production gap because a design complexity increases. A verification methodology need an evolution to overcome a verification gap. The proposed platform includes a high level synthesis, and we develop a power-aware verification platform for low power design and verification automation using it's results. We developed a verification automation and power-aware verification methodology based on control and data flow graph (CDFG) and an abstract level language and RTL. The verification platform includes self-checking and the coverage driven verification methodology. Especially, the number of the random vector decreases minimum 5.75 times with the constrained random vector algorithm which is developed for the power-aware verification. This platform can verify a low power design with a general logic simulator using a power and power cell modeling method. This unified design and verification platform allow automatically to verify, design and synthesis the giga-scale design from the system level to RTL level in the whole design flow.

Face recognition using PCA and face direction information (PCA와 얼굴방향 정보를 이용한 얼굴인식)

  • Kim, Seung-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.609-616
    • /
    • 2017
  • In this paper, we propose an algorithm to obtain more stable and high recognition rate by using left and right rotation information of input image in order to obtain a stable recognition rate in face recognition. The proposed algorithm uses the facial image as the input information in the web camera environment to reduce the size of the image and normalize the information about the brightness and color to obtain the improved recognition rate. We apply Principal Component Analysis (PCA) to the detected candidate regions to obtain feature vectors and classify faces. Also, In order to reduce the error rate range of the recognition rate, a set of data with the left and right $45^{\circ}$ rotation information is constructed considering the directionality of the input face image, and each feature vector is obtained with PCA. In order to obtain a stable recognition rate with the obtained feature vector, it is after scattered in the eigenspace and the final face is recognized by comparing euclidean distant distances to each feature. The PCA-based feature vector is low-dimensional data, but there is no problem in expressing the face, and the recognition speed can be fast because of the small amount of calculation. The method proposed in this paper can improve the safety and accuracy of recognition and recognition rate faster than other algorithms, and can be used for real-time recognition system.

Development and Application of Convergence Education about Support Vector Machine for Elementary Learners (초등 학습자를 위한 서포트 벡터 머신 융합 교육 프로그램의 개발과 적용)

  • Yuri Hwang;Namje Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.95-103
    • /
    • 2023
  • This paper proposes an artificial intelligence convergence education program for teaching the main concept and principle of Support Vector Machines(SVM) at elementary schools. The developed program, based on Jeju's natural environment theme, explains the decision boundary and margin of SVM by vertical and parallel from 4th grade mathematics curriculum. As a result of applying the developed program to 3rd and 5th graders, most students intuitively inferred the location of the decision boundary. The overall performance accuracy and rate of reasonable inference of 5th graders were higher. However, in the self-evaluation of understanding, the average value was higher in the 3rd grade, contrary to the actual understanding. This was due to the fact that junior learners had a greater tendency to feel satisfaction and achievement. On the other hand, senior learners presented more meaningful post-class questions based on their motivation for further exploration. We would like to find effective ways for artificial intelligence convergence education for elementary school students.

A Study on the Extraction of Psychological Distance Embedded in Company's SNS Messages Using Machine Learning (머신 러닝을 활용한 회사 SNS 메시지에 내포된 심리적 거리 추출 연구)

  • Seongwon Lee;Jin Hyuk Kim
    • Information Systems Review
    • /
    • v.21 no.1
    • /
    • pp.23-38
    • /
    • 2019
  • The social network service (SNS) is one of the important marketing channels, so many companies actively exploit SNSs by posting SNS messages with appropriate content and style for their customers. In this paper, we focused on the psychological distances embedded in the SNS messages and developed a method to measure the psychological distance in SNS message by mixing a traditional content analysis, natural language processing (NLP), and machine learning. Through a traditional content analysis by human coding, the psychological distance was extracted from the SNS message, and these coding results were used for input data for NLP and machine learning. With NLP, word embedding was executed and Bag of Word was created. The Support Vector Machine, one of machine learning techniques was performed to train and test the psychological distance in SNS message. As a result, sensitivity and precision of SVM prediction were significantly low because of the extreme skewness of dataset. We improved the performance of SVM by balancing the ratio of data by upsampling technique and using data coded with the same value in first content analysis. All performance index was more than 70%, which showed that psychological distance can be measured well.

Fast Matching Pursuit based on Vector Length Comparison (벡터길이 비교를 이용한 고속 Matching Pursuit)

  • O, Seok-Byeong;Jeon, Byeong-U
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2001
  • Matching pursuit algorithm was successfully demonstrated useful in low bit-rate video coding, However, one of the practical concerns related to applying the matching pursuit algorithm to application is its massive computation required for finding bases whose weighted sum best approximates the given input image. The main contribution of this paper is that we provide a new method that can drastically reduce the computational load without any degradation of image quality. Its main idea is based on reducing the number of inner product calculation required for finding best bases because the complexity of matching pursuit algorithm is due to the exhaustive local inner product calculation. As the first step, we compute a matrix which is the 1-D inner product of the given motion-compensated error input image with the 1-D vertical Gabor functions using the separable property of Gabor bases. In the second step, we calculate length of each vector in the matrix that corresponds to 1-D horizontal Gabor function, and compare the length with the current maximum absolute inner product value so far. According to the result of this comparison, one can decide whether or not to calculate the inner product. Since most of them do not need to calculate the inner product value, one can significantly reduce the computational load. Experimental results show that proposed method reduces about 70% of inner product calculation compared to the Neff's fast algorithm without any degradation of image quality.

  • PDF

An Effective Feature Extraction Method for Fault Diagnosis of Induction Motors (유도전동기의 고장 진단을 위한 효과적인 특징 추출 방법)

  • Nguyen, Hung N.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.23-35
    • /
    • 2013
  • This paper proposes an effective technique that is used to automatically extract feature vectors from vibration signals for fault classification systems. Conventional mel-frequency cepstral coefficients (MFCCs) are sensitive to noise of vibration signals, degrading classification accuracy. To solve this problem, this paper proposes spectral envelope cepstral coefficients (SECC) analysis, where a 4-step filter bank based on spectral envelopes of vibration signals is used: (1) a linear predictive coding (LPC) algorithm is used to specify spectral envelopes of all faulty vibration signals, (2) all envelopes are averaged to get general spectral shape, (3) a gradient descent method is used to find extremes of the average envelope and its frequencies, (4) a non-overlapped filter is used to have centers calculated from distances between valley frequencies of the envelope. This 4-step filter bank is then used in cepstral coefficients computation to extract feature vectors. Finally, a multi-layer support vector machine (MLSVM) with various sigma values uses these special parameters to identify faulty types of induction motors. Experimental results indicate that the proposed extraction method outperforms other feature extraction algorithms, yielding more than about 99.65% of classification accuracy.

Wavelet-Based Digital Watermarking Using Level-Adaptive Thresholding (레벨 적응적 이치화를 이용한 웨이블릿 기반의 디지털 워터마킹)

  • Kim, Jong-Ryul;Mun, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • In this paper, a new digital watermarking algorithm using wavelet transform is proposed. Wavelet transform is widely used for image processing, because of its multiresolution characteristic which conforms to the principles of the human visual system(HVS). It is also very efficient for localizing images in the spatial and frequency domain. Since wavelet coefficients can be characterized by the gaussian distribution, the proposed algorithm uses a gaussian distributed random vector as the watermark in order to achieve invisibility and robustness. After the original image is transformed using DWT(Discrete Wavelet Transform), the coefficients of all subbands including LL subband are utilized to equally embed the watermark to the whole image. To select perceptually significant coefficients for each subband, we use level-adaptive thresholding. The watermark is embedded to the selected coeffocoents, using different scale factors according to the wavelet characteristics. In the process of watermark detection, the similarity between the original watermark and the extracted watermark is calculated by using vector projection method. We analyze the performance of the proposed algorithm, compared with other transform-domain watermarking methods. The experimental results tested on various images show that the proposed watermark is less visible to human eyes and more robust to image compressions, image processings, geometric transformations and various noises, than the existing methods.

  • PDF

Fault Detection Method for Steam Boiler Tube Using Mahalanobis Distance (마할라노비스 거리를 이용한 증기보일러 튜브의 고장탐지방법)

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • Since thermal power plant (TPP) equipment is operated under very high pressure and temperature, failures of the equipment give rise to severe losses of life and property. To prevent the losses, fault detection method is, therefore, absolutely necessary to identify abnormal operating conditions of the equipment in advance. In this paper, we present Mahalanobis distance (MD) based fault detection method for steam boiler tube in TPP. In the MD-based method, it is supposed that abnormal data samples are far away from normal samples. Using multivariate samples collected from normal target system, mean vector and covariance matrix are calculated and threshold value of MD is decided. In a test phase, after calculating the MDs between the mean vector and test samples, alarm signals occur if the MDs exceed the predefined threshold. To demonstrate the performance, a failure case due to boiler tube leakage in 200MW TPP is employed. The experimental results show that the presented method can perform early detection of boiler tube leakage successfully.

A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet (혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we proposed a method of baseline correction for analysis of Raman spectra of platelets from Alzheimer's disease (AD) transgenic mice. Measured Raman spectra include the meaningful information and unnecessary noise which is composed of baseline and additive noise. The Raman spectrum is divided into the local region including several peaks and the spectrum of the region is modeled by curve fitting using Gaussian model. The additive noise is clearly removed from the process of replacing the original spectrum with the fitted model. The baseline correction after interpolating the local minima of the fitted model with linear, piecewise cubic Hermite and cubic spline algorithm. The baseline corrected models extract the feature with principal component analysis (PCA). The classification result of support vector machine (SVM) and maximum $a$ posteriori probability (MAP) using linear interpolation method showed the good performance about overall number of principal components, especially SVM gave the best performance which is about 97.3% true classification average rate in case of piecewise cubic Hermite algorithm and 5 principal components. In addition, it confirmed that the proposed baseline correction method compared with the previous research result could be effectively applied in the analysis of the Raman spectra of platelet.

Image Retrieval Using Spatial Color Correlation and Texture Characteristics Based on Local Fourier Transform (색상의 공간적인 상관관계와 국부적인 푸리에 변환에 기반한 질감 특성을 이용한 영상 검색)

  • Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, we propose a technique for retrieving images using spatial color correlation and texture characteristics based on local fourier transform. In order to retrieve images, two new descriptors are proposed. One is a color descriptor which represents spatial color correlation. The other is a descriptor combining the proposed color descriptor with texture descriptor. Since most of existing color descriptors including color correlogram which represent spatial color correlation considered just color distribution between neighborhood pixels, the structural information of neighborhood pixels is not considered. Therefore, a novel color descriptor which simultaneously represents spatial color distribution and structural information is proposed. The proposed color descriptor represents color distribution of Min-Max color pairs calculating color distance between center pixel and neighborhood pixels in a block with 3x3 size. Also, the structural information which indicates directional difference between minimum color and maximum color is simultaneously considered. Then new color descriptor(min-max color correlation descriptor, MMCCD) containing mean and variance values of each directional difference is generated. While the proposed color descriptor includes by far smaller feature vector over color correlogram, the proposed color descriptor improves 2.5 % ${\sim}$ 13.21% precision rate, compared with color correlogram. In addition, we propose a another descriptor which combines the proposed color descriptor and texture characteristics based on local fourier transform. The combined method reduces size of feature vector as well as shows improved results over existing methods.