Journal of the Korea Society of Computer and Information
/
v.14
no.10
/
pp.217-223
/
2009
Vocabulary recognition system of Mobile terminal is executed statistical method for vocabulary recognition and used statistical grammar recognition system using N-gram. If limit arithmetic processing capacity in memory of vocabulary to grow then vocabulary recognition algorithm complicated and need a large scale search space and many processing time on account of impossible to process. This study suggest vocabulary recognition optimize using MLHF System. MLHF separate acoustic search and lexical search system using FLaVoR. Acoustic search feature vector of speech signal extract using HMM, lexical search recognition execution using Levenshtein distance algorithm. System performance as a result of represent vocabulary dependence recognition rate of 98.63%, vocabulary independence recognition rate of 97.91%, represent recognition speed of 1.61 second.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.667-669
/
2021
본 논문에서는 벡터 기반 데이터 증강 기법(Data augmentation)을 제안하여 학습 데이터를 구축한 뒤, 이를 합성곱 신경망(Convolutional Neural Networks, CNN)으로 실제 균열과 가까운 패턴을 표현할 수 있는 프레임워크를 제안한다. 건축물의 균열은 인명 피해를 가져오는 건물 붕괴와 낙하 사고를 비롯한 큰 사고의 원인이다. 이를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이다. 하지만, 실제 균열 이미지는 복잡한 패턴을 가지고 있을 뿐만 아니라, 위험한 상황에 노출되기 때문에 대량의 데이터를 확보하기 어렵다. 이러한 데이터베이스 구축의 문제점은 인위적으로 특정 부분에 변형을 주어 데이터양을 늘리는 탄성왜곡(Elastic distortion) 기법으로 해결할 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 CNN을 활용하여 보여준다. 탄성왜곡 기법보다 CNN을 이용했을 때, 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적으로 사용되는 픽셀 기반 데이터가 아닌 벡터 기반으로 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수함을 보였다. 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 쉽게 균열 데이터베이스를 구축할 수 있었다. 이는 장기적으로 구조물의 안정성 평가에 이바지하여 안전사고에 대한 불안감에서 벗어나 더욱 안전하고 쾌적한 주거 환경을 조성할 것으로 기대된다.
Van-Thanh Pham;Hye-Sook Son;Cheol-Ho Kim;Yun Jang;Seung-Eock Kim
Steel and Composite Structures
/
v.46
no.6
/
pp.731-744
/
2023
Vehicle load information is an important role in operating and ensuring the structural health of cable-stayed bridges. In this regard, an efficient and economic method is proposed for vehicle load detection based on the observed cable tension and vehicle position using a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), a robust program for modeling and considering both geometric and material nonlinearities of bridge structures subjected to vehicle load with low computational costs. With the superiority of GNN, the proposed model is demonstrated to precisely capture complex nonlinear correlations between the input features and vehicle load in the output. Four popular machine learning methods including artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machines (SVM) are refereed in a comparison. A case study of a cable-stayed bridge with the typical truck is considered to evaluate the model's performance. The results demonstrate that the GNN-based model provides high accuracy and efficiency in prediction with satisfactory correlation coefficients, efficient determination values, and very small errors; and is a novel approach for vehicle load detection with the input data of the existing monitoring system.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.13-16
/
2022
LSTM과 같은 딥러닝 기법을 이용해 언어모델을 얻는 과정에서 일종의 부산물로 학습 대상인 말뭉치를 구성하는 어휘의 단어벡터를 얻을 수 있다. 단어벡터의 차원을 2차원으로 감소시킨 후 이를 평면에 도시하면 대상 문장/문서의 핵심 어휘 사이의 상대적인 거리와 각도 등을 직관적으로 확인할 수 있다. 본 연구에서는 기형도의 시(詩)을 중심으로 특정 작품을 선정한 후 시를 구성하는 핵심 어휘들의 차원 감소된 단어벡터를 2D 평면에 도시하여, 단어벡터를 얻기 위한 텍스트 전처리 방식에 따라 그 거리/각도가 달라지는 양상을 분석해 보았다. 어휘 사이의 거리에 의해 군집/분류의 결과가 달라질 수 있고, 각도에 의해 유사도/유추 연산의 결과가 달라질 수 있으므로, 평면상에서 핵심 어휘들의 상대적인 거리/각도의 직관적 확인을 통해 군집/분류작업과 유사도 추천/유추 등의 작업 결과의 양상 변화를 확인할 수 있었다. 이상의 결과를 통해, 영화 추천/리뷰나 문학작품과 같이 단어 하나하나의 배치에 따라 그 분위기와 정동이 달라지는 분야의 경우 텍스트 전처리에 따른 거리/각도 변화를 미리 직관적으로 확인한다면 분류/유사도 추천과 같은 작업을 좀 더 정밀하게 수행할 수 있을 것으로 판단된다.
Seo-Hee Hwang;Si-Yeon Pak;Jin-Ho Chung;Daehwan Kim;Yongwan Kim
Journal of information and communication convergence engineering
/
v.21
no.4
/
pp.300-305
/
2023
Audience reactions in response to remote virtual performances must be compressed before being transmitted to the server. The server, which aggregates these data for group insights, requires a distribution code for the transfer. Recently, distributed learning algorithms such as federated learning have gained attention as alternatives that satisfy both the information security and efficiency requirements. In distributed learning, no individual user has access to complete information, and the objective is to achieve a learning effect similar to that achieved with the entire information. It is therefore important to distribute interdependent information among users and subsequently aggregate this information following training. In this paper, we present a new extension technique for minimal code that allows a new minimal code with a different length and Hamming weight to be generated through the product of any vector and a given minimal code. Thus, the proposed technique can generate minimal codes with previously unknown parameters. We also present a scenario wherein these combined methods can be applied.
Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
Geomechanics and Engineering
/
v.37
no.6
/
pp.539-554
/
2024
This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.7
no.2
/
pp.138-142
/
2007
This paper presents an algorithm which extends the rapidly-exploring random tree (RRT) framework to deal with change of the task environments. This algorithm called the Retrieval RRT Strategy (RRS) combines a support vector machine (SVM) and RRT and plans the robot motion in the presence of the change of the surrounding environment. This algorithm consists of two levels. At the first level, the SVM is built and selects a proper path from the bank of RRTs for a given environment. At the second level, a real path is planned by the RRT planners for the: given environment. The suggested method is applied to the control of $KUKA^{TM}$, a commercial 6 DOF robot manipulator, and its feasibility and efficiency are demonstrated via the cosimulatation of $MatLab^{TM}\;and\;RecurDyn^{TM}$.
Journal of the Korean Institute of Telematics and Electronics B
/
v.30B
no.1
/
pp.45-55
/
1993
In this paper, a two-stage block matching algorithm (BMA), which can reduce greatly the computational complexity of the conventional BMAs, is proposed, in which the onedimensional distortion measure based on the integral projection is introduced to determine the candidate motion vectors and then among them a final motion vector is detected based on the conventional two-dimensional distortion measure. Due to the one-dimensional calculation of a distortion measure, the proposed algorithm can reduce the computational complexity of the conventional BMA (full search method with a 16$\times$16 block) by a factor of 4, with its performance comparable to those of the conventional ones. Simulation results based on the original and noisy image sequences are shown. Also the simulation of the proposed method combined with the MPEG (Moving Picture Experts Group) SM3 (Simulation Model Three) is presented. Computer simulation shows that the proposed algorithm is fast with its performance comparable to those of the conventional ones.
Proceedings of the Korea Inteligent Information System Society Conference
/
1999.10a
/
pp.313-320
/
1999
In this paper, a translation, rotation and scale invariant system for the classification of closed 2D images using the bispectrum of a contour sequence and the weighted fuzzy mean method is derived and compared with the classification process using one of the competitive neural algorithm, called a LVQ(Learning Vector Quantization). The bispectrun based on third order cumulants is applied to the contour sequences of the images to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images and are fed into an classifier using weighted fuzzy mean method. The experimental processes with eight different shapes of aircraft images are presented to illustrate the high performance of the proposed classifier.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.15
no.4
/
pp.277-282
/
2015
Braincomputer interface (BCI) technology is making advances in the field of humancomputer interaction (HCI). To improve the BCI technology, we study the changes in the electroencephalogram (EEG) signals for six levels of grip strength: 10%, 20%, 40%, 50%, 70%, and 80% of the maximum voluntary contraction (MVC). The measured EEG data are categorized into three classes: Weak, Medium, and Strong. Features are then extracted using power spectrum analysis and multiclass-common spatial pattern (multiclass-CSP). Feature datasets are classified using a support vector machine (SVM). The accuracy rate is higher for the Strong class than the other classes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.