• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.029 seconds

Face Pose Estimation using Stereo Image (스테레오 영상을 이용한 얼굴 포즈 추정)

  • So, In-Mi;Kang, Sun-Kyung;Kim, Young-Un;Lee, Chi-Geun;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.151-159
    • /
    • 2006
  • In this paper. we Present an estimation method of a face pose by using two camera images. First, it finds corresponding facial feature points of eyebrow, eye and lip from two images After that, it computes three dimensional location of the facial feature points by using the triangulation method of stereo vision techniques. Next. it makes a triangle by using the extracted facial feature points and computes the surface normal vector of the triangle. The surface normal of the triangle represents the direction of the face. We applied the computed face pose to display a 3D face model. The experimental results show that the proposed method extracts correct face pose.

  • PDF

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using Deep Feature applicable to Large-scale Datasets

  • Byun, Sung-Woo;Lee, Seok-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4300-4314
    • /
    • 2019
  • With the development of video-related applications, media content has increased dramatically through applications. There is a substantial amount of near-duplicate videos (NDVs) among Internet videos, thus NDVR is important for eliminating near-duplicates from web video searches. This paper proposes a novel NDVR system that supports large-scale retrieval and contributes to the efficient and accurate retrieval performance. For this, we extracted keyframes from each video at regular intervals and then extracted both commonly used features (LBP and HSV) and new image features from each keyframe. A recent study introduced a new image feature that can provide more robust information than existing features even if there are geometric changes to and complex editing of images. We convert a vector set that consists of the extracted features to binary code through a set of hash functions so that the similarity comparison can be more efficient as similar videos are more likely to map into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the effectiveness of the NDVR system and compare this against previous NDVR systems using the public video collections CC_WEB_VIDEO. The proposed NDVR system's performance is very promising compared to previous NDVR systems.

The Security DV-Hop Algorithm against Multiple-Wormhole-Node-Link in WSN

  • Li, Jianpo;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2223-2242
    • /
    • 2019
  • Distance Vector-Hop (DV-Hop) algorithm is widely used in node localization. It often suffers the wormhole attack. The current researches focus on Double-Wormhole-Node-Link (DWNL) and have limited attention to Multi-Wormhole-Node-Link (MWNL). In this paper, we propose a security DV-Hop algorithm (AMLDV-Hop) to resist MWNL. Firstly, the algorithm establishes the Neighbor List (NL) in initialization phase. It uses the NL to find the suspect beacon nodes and then find the actually attacked beacon nodes by calculating the distances to other beacon nodes. The attacked beacon nodes generate and broadcast the conflict sets to distinguish the different wormhole areas. The unknown nodes take the marked beacon nodes as references and mark themselves with different numbers in the first-round marking. If the unknown nodes fail to mark themselves, they will take the marked unknown nodes as references to mark themselves in the second-round marking. The unknown nodes that still fail to be marked are semi-isolated. The results indicate that the localization error of proposed AMLDV-Hop algorithm has 112.3%, 10.2%, 41.7%, 6.9% reduction compared to the attacked DV-Hop algorithm, the Label-based DV-Hop (LBDV-Hop), the Secure Neighbor Discovery Based DV-Hop (NDDV-Hop), and the Against Wormhole DV-Hop (AWDV-Hop) algorithm.

A Novel Approach to Predict the Longevity in Alzheimer's Patients Based on Rate of Cognitive Deterioration using Fuzzy Logic Based Feature Extraction Algorithm

  • Sridevi, Mutyala;B.R., Arun Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.79-86
    • /
    • 2021
  • Alzheimer's is a chronic progressive disease which exhibits varied symptoms and behavioural traits from person to person. The deterioration in cognitive abilities is more noticeable through their Activities and Instrumental Activities of Daily Living rather than biological markers. This information discussed in social media communities was collected and features were extracted by using the proposed fuzzy logic based algorithm to address the uncertainties and imprecision in the data reported. The data thus obtained is used to train machine learning models in order to predict the longevity of the patients. Models built on features extracted using the proposed algorithm performs better than models trained on full set of features. Important findings are discussed and Support Vector Regressor with RBF kernel is identified as the best performing model in predicting the longevity of Alzheimer's patients. The results would prove to be of high value for healthcare practitioners and palliative care providers to design interventions that can alleviate the trauma faced by patients and caregivers due to chronic diseases.

A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction

  • Lim, Kha Shing;Lee, Lam Hong;Sim, Yee-Wai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.31-40
    • /
    • 2021
  • The increasing number of credit card fraud cases has become a considerable problem since the past decades. This phenomenon is due to the expansion of new technologies, including the increased popularity and volume of online banking transactions and e-commerce. In order to address the problem of credit card fraud detection, a rule-based approach has been widely utilized to detect and guard against fraudulent activities. However, it requires huge computational power and high complexity in defining and building the rule base for pattern matching, in order to precisely identifying the fraud patterns. In addition, it does not come with intelligence and ability in predicting or analysing transaction data in looking for new fraud patterns and strategies. As such, Data Mining and Machine Learning algorithms are proposed to overcome the shortcomings in this paper. The aim of this paper is to highlight the important techniques and methodologies that are employed in fraud detection, while at the same time focusing on the existing literature. Methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), naïve Bayesian, k-Nearest Neighbour (k-NN), Decision Tree and Frequent Pattern Mining algorithms are reviewed and evaluated for their performance in detecting fraudulent transaction.

Digital Signage System Based on Intelligent Recommendation Model in Edge Environment: The Case of Unmanned Store

  • Lee, Kihoon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.599-614
    • /
    • 2021
  • This paper proposes a digital signage system based on an intelligent recommendation model. The proposed system consists of a server and an edge. The server manages the data, learns the advertisement recommendation model, and uses the trained advertisement recommendation model to determine the advertisements to be promoted in real time. The advertisement recommendation model provides predictions for various products and probabilities. The purchase index between the product and weather data was extracted and reflected using correlation analysis to improve the accuracy of predicting the probability of purchasing a product. First, the user information and product information are input to a deep neural network as a vector through an embedding process. With this information, the product candidate group generation model reduces the product candidates that can be purchased by a certain user. The advertisement recommendation model uses a wide and deep recommendation model to derive the recommendation list by predicting the probability of purchase for the selected products. Finally, the most suitable advertisements are selected using the predicted probability of purchase for all the users within the advertisement range. The proposed system does not communicate with the server. Therefore, it determines the advertisements using a model trained at the edge. It can also be applied to digital signage that requires immediate response from several users.

An Intelligent Framework for Feature Detection and Health Recommendation System of Diseases

  • Mavaluru, Dinesh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.177-184
    • /
    • 2021
  • All over the world, people are affected by many chronic diseases and medical practitioners are working hard to find out the symptoms and remedies for the diseases. Many researchers focus on the feature detection of the disease and trying to get a better health recommendation system. It is necessary to detect the features automatically to provide the most relevant solution for the disease. This research gives the framework of Health Recommendation System (HRS) for identification of relevant and non-redundant features in the dataset for prediction and recommendation of diseases. This system consists of three phases such as Pre-processing, Feature Selection and Performance evaluation. It supports for handling of missing and noisy data using the proposed Imputation of missing data and noise detection based Pre-processing algorithm (IMDNDP). The selection of features from the pre-processed dataset is performed by proposed ensemble-based feature selection using an expert's knowledge (EFS-EK). It is very difficult to detect and monitor the diseases manually and also needs the expertise in the field so that process becomes time consuming. Finally, the prediction and recommendation can be done using Support Vector Machine (SVM) and rule-based approaches.

Innovation and investment strategies to intensify the potential modernization and to increase the competitiveness of microeconomic systems

  • Tulchynska, Svitlana;Vovk, Olha;Popelo, Olha;Saloid, Stanislav;Kostiunik, Olena
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.161-168
    • /
    • 2021
  • Within the article, strategic guidelines for the modernization of microeconomic systems are identified. Modernization levels of the potential implementation are formalized for enterprises: contractile, extensive technical, technological, progressive, adaptive, steady, intensive, creative, absolute and leader modernization. This allowed to specify the directions and tasks of the enterprise modernization at different management levels. Accordingly, the conditions and criteria for selecting resource tools are set. It is proved that the strategies of the potential modernization of enterprises must be carried out at four main management levels: first, at the enterprise level; secondly, for a particular type of product / service; third, by functional directions of modernization of separate spheres of the enterprise activity or responsibility, fourth, at the level of structural units of the enterprise. It is substantiated that in the processes due to the activation of the potential modernization, the resources are transformed into the results of the innovation implementation and the investment strategies modernization. A system of tasks for the corporate strategies implementation in order to modernize microeconomic systems has been formed. Key vectors of the activation determine the nature and properties of investment resources and necessary innovations to enhance the modernization potential. Therefore, the system of innovation and investment strategies' modernization, based on the vector and resource provision of the modernization process, is specified:

A Quantification Method of Human Body Motion Similarity using Dynamic Time Warping for Keypoints Extracted from Video Streams (동영상에서 추출한 키포인트 정보의 동적 시간워핑(DTW)을 이용한 인체 동작 유사도의 정량화 기법)

  • Im, June-Seok;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1109-1116
    • /
    • 2020
  • The matching score evaluating human copying ability can be a good measure to check children's developmental stages, or sports movements like golf swing and dance, etc. It also can be used as HCI for AR, VR applications. This paper presents a method to evaluate the motion similarity between demonstrator who initiates movement and participant who follows the demonstrator action. We present a quantification method of the similarity which utilizes Euclidean L2 distance of Openpose keypoins vector similarity. The proposed method adapts DTW, thus can flexibly cope with the time delayed motions.