• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.036 seconds

Electrical/Mechanical Diagnosis of Local Deterioration in 600V Shielded Twist Pair Cable in a Nuclear Power Plant (원전용 600V 차폐 꼬임쌍선 케이블의 국부열화에 대한 전기적/기계적 진단)

  • Park, Myeongkoo;Kim, Kwangho;Lim, Chanwoo;Kim, TaeYoon;Kim, Hyunsu;Chai, Jangbom;Kim, Byungsung;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.203-210
    • /
    • 2017
  • In this paper, we propose a electrical/mechanical method to effectively diagnose the local deterioration of a 10m long power shielded twist pair cable defined by the American Wire Gauge (AWG) 14 specification using electrical/mechanical methods. The rapid deterioration of the cable proceeded by using the heating furnace, which is based on the Arrhenius equations proceeds from 0 to 35 years with the deteriorated equivalent model. In this paper, we introduce a method to diagnose the characteristics of locally deteriorated cable by using $S_{21}$ phase and frequency change rate measured by vector network analyzer which is the electrical diagnostic method. The measured $S_{21}$ phase and rate of change of frequency show a constant correlation with the number of years of locally deteriorated cable, thus it can be useful for diagnosing deteriorated cables. The change of modulus due to deterioration was measured by a modulus measuring device, which is defined by the ratio of deformation from the force externally applied to the cable, and the rate of modulus change also shows a constant correlation with the number of years of locally deteriorated cable. Finally, By combining the advantages of electrical/mechanical diagnostic methods, we can efficiently diagnose the local deterioration in the power shielded cable.

Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs (한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발)

  • Kim, GyeongMin;Kim, Kuekyeng;Jo, Jaechoon;Lim, HeuiSeok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.47-52
    • /
    • 2018
  • Named Entity Recognition is a system that extracts entity names such as Persons(PS), Locations(LC), and Organizations(OG) that can have a unique meaning from a document and determines the categories of extracted entity names. Recently, Bi-LSTM-CRF, which is a combination of CRF using the transition probability between output data from LSTM-based Bi-LSTM model considering forward and backward directions of input data, showed excellent performance in the study of object name recognition using deep-learning, and it has a good performance on the efficient embedding vector creation by character and word unit and the model using CNN and LSTM. In this research, we describe the Bi-LSTM-CNN-CRF model that enhances the features of the Korean named entity recognition system and propose a method for constructing the traditional culture corpus. We also present the results of learning the constructed corpus with the feature augmentation model for the recognition of Korean object names.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

A Detailed Review on Recognition of Plant Disease Using Intelligent Image Retrieval Techniques

  • Gulbir Singh;Kuldeep Kumar Yogi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.77-90
    • /
    • 2023
  • Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.

Spam Image Detection Model based on Deep Learning for Improving Spam Filter

  • Seong-Guk Nam;Dong-Gun Lee;Yeong-Seok Seo
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.289-301
    • /
    • 2023
  • Due to the development and dissemination of modern technology, anyone can easily communicate using services such as social network service (SNS) through a personal computer (PC) or smartphone. The development of these technologies has caused many beneficial effects. At the same time, bad effects also occurred, one of which was the spam problem. Spam refers to unwanted or rejected information received by unspecified users. The continuous exposure of such information to service users creates inconvenience in the user's use of the service, and if filtering is not performed correctly, the quality of service deteriorates. Recently, spammers are creating more malicious spam by distorting the image of spam text so that optical character recognition (OCR)-based spam filters cannot easily detect it. Fortunately, the level of transformation of image spam circulated on social media is not serious yet. However, in the mail system, spammers (the person who sends spam) showed various modifications to the spam image for neutralizing OCR, and therefore, the same situation can happen with spam images on social media. Spammers have been shown to interfere with OCR reading through geometric transformations such as image distortion, noise addition, and blurring. Various techniques have been studied to filter image spam, but at the same time, methods of interfering with image spam identification using obfuscated images are also continuously developing. In this paper, we propose a deep learning-based spam image detection model to improve the existing OCR-based spam image detection performance and compensate for vulnerabilities. The proposed model extracts text features and image features from the image using four sub-models. First, the OCR-based text model extracts the text-related features, whether the image contains spam words, and the word embedding vector from the input image. Then, the convolution neural network-based image model extracts image obfuscation and image feature vectors from the input image. The extracted feature is determined whether it is a spam image by the final spam image classifier. As a result of evaluating the F1-score of the proposed model, the performance was about 14 points higher than the OCR-based spam image detection performance.

A Unicode based Deep Handwritten Character Recognition model for Telugu to English Language Translation

  • BV Subba Rao;J. Nageswara Rao;Bandi Vamsi;Venkata Nagaraju Thatha;Katta Subba Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.101-112
    • /
    • 2024
  • Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.

Financial Fraud Detection using Data Mining: A Survey

  • Sudhansu Ranjan Lenka;Bikram Kesari Ratha
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.169-185
    • /
    • 2024
  • Due to levitate and rapid growth of E-Commerce, most of the organizations are moving towards cashless transaction Unfortunately, the cashless transactions are not only used by legitimate users but also it is used by illegitimate users and which results in trouncing of billions of dollars each year worldwide. Fraud prevention and Fraud Detection are two methods used by the financial institutions to protect against these frauds. Fraud prevention systems (FPSs) are not sufficient enough to provide fully security to the E-Commerce systems. However, with the combined effect of Fraud Detection Systems (FDS) and FPS might protect the frauds. However, there still exist so many issues and challenges that degrade the performances of FDSs, such as overlapping of data, noisy data, misclassification of data, etc. This paper presents a comprehensive survey on financial fraud detection system using such data mining techniques. Over seventy research papers have been reviewed, mainly within the period 2002-2015, were analyzed in this study. The data mining approaches employed in this research includes Neural Network, Logistic Regression, Bayesian Belief Network, Support Vector Machine (SVM), Self Organizing Map(SOM), K-Nearest Neighbor(K-NN), Random Forest and Genetic Algorithm. The algorithms that have achieved high success rate in detecting credit card fraud are Logistic Regression (99.2%), SVM (99.6%) and Random Forests (99.6%). But, the most suitable approach is SOM because it has achieved perfect accuracy of 100%. But the algorithms implemented for financial statement fraud have shown a large difference in accuracy from CDA at 71.4% to a probabilistic neural network with 98.1%. In this paper, we have identified the research gap and specified the performance achieved by different algorithms based on parameters like, accuracy, sensitivity and specificity. Some of the key issues and challenges associated with the FDS have also been identified.

Face Tracking System Using Updated Skin Color (업데이트된 피부색을 이용한 얼굴 추적 시스템)

  • Ahn, Kyung-Hee;Kim, Jong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.610-619
    • /
    • 2015
  • *In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.

Enhanced Image Mapping Method for Computer-Generated Integral Imaging System (집적 영상 시스템을 위한 향상된 이미지 매핑 방법)

  • Lee, Bin-Na-Ra;Cho, Yong-Joo;Min, Sung-Wook;Park, Kyung-Shin
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.535-540
    • /
    • 2006
  • 집적 영상(Integral Imaging) 시스템은 관찰자가 특수안경의 착용 없이 육안으로 3 차원 영상을 볼 수 있는 무안경식 양안시차 디스플레이 방식 중 하나로, 수직, 수평 시차와 총천연색의 영상을 제공한다. 집적영상 시스템은 3 차원 정보를 2 차원 엘리멘탈 이미지 (Elemental image)의 형태로 저장하는데, 엘리멘탈 이미지는 조금씩 다른 방향에서 제한된 크기로 촬영된 이미지이다. 엘리멘탈 이미지는 컴퓨터 그래픽으로 만들어질 수도 있는데, 이를 이용하는 집적 영상 방식을 CG 직접 영상 시스템이라 한다. 이와 같이 컴퓨터 계산에 의해 엘리멘탈 이미지를 얻는 과정을 이미지 매핑 (Image mapping)이라 부른다. 이제까지 제안된 이미지 매핑 방식에는 점대점 (Point to Point), MVR (Multi-Viewpoint Rendering), PGR (Parallel Group Rendering) 이 있다. 그러나 이런 방식들은 계산량이 많거나 렌즈 어레이 개수의 증가에 의해 속도에 영향을 받는 단점이 있어, 아직 가상현실 같은 실시간 CG 응용 분야에 사용하기 어려운 문제가 있다. 본 논문에서는 VVR (Viewpoint Vector Rendering)이라는 기존의 방법과 비교해 향상된 새로운 이미지 매핑 방법을 제안한다. 먼저 VVR 개념을 자세히 설명한 후 VVR 을 사용한 집적 영상 시스템을 구현하여 MVR 방법과 비교 분석한 실험결과와 개선되어야 할 방향을 제시한다.

  • PDF

A Vision Based Pallet Measurement Method by Estimating 3D Direction of A Line Parallel to The Ground (지면 평행 직선의 3차원 방향 추정에 의한 비전 기반 파렛트 측정 방법)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1229-1235
    • /
    • 2020
  • A line parallel to the ground is frequently shown in our daily life, which enables us to guess its direction. Especially, such a guess tends to become clear when a vanishing line of the ground is shown together. In this paper, a vision based pallet measurement method is suggested, which uses a technique for estimating three-dimensional direction of a line parallel to the ground. The technique computes actually a vector heading to intersection of a given imaged line parallel to the ground and the ground vanishing line determined previously on calibrating a measurement camera. Through an experiment of measuring a real commercial pallet with various orientation and distance, we found that the technique could measure the orientation of the pallet correctly and accurately. The technique worked well even though an edge line available on the front plane of a pallet was almost parallel to the ground vanishing line.