• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.033 seconds

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.

Customized Recipe Recommendation System Implemented in the form of a Chatbot (챗봇 형태로 구현한 사용자 맞춤형 레시피 추천 시스템)

  • Ahn, Ye-Jin;Cho, Ha-Young;Kang, Shin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.543-550
    • /
    • 2020
  • Interest in food recipe retrieval systems has been increasing recently. Most computer-based recipe retrieval systems are searched by cooking name or ingredient name. Since each recipe provides information in different weighing units, recalculations to the desired amount are necessary and inconvenient. This paper introduces a computer system that addresses these inconveniences. The system is a chatbot system, based on web-based recipe recommendations, for users familiar with the use of messenger conversation systems. After selecting the most popular recipes by their names, and pre-processing to extract only information required for the recipes, the system recommends recipes based on the 100,000 data. Recipes are then searched by the names of food ingredients (included and excluded). Recalculations are performed based on the number of servings entered by the user. A satisfaction rate for the systems' recommendations was 90.5%.

Energy-Efficient Resource Allocation for Application Including Dependent Tasks in Mobile Edge Computing

  • Li, Yang;Xu, Gaochao;Ge, Jiaqi;Liu, Peng;Fu, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2422-2443
    • /
    • 2020
  • This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device (MD) includes an application consisting of multiple computation components or tasks with dependencies. MD can offload part of each computation-intensive latency-sensitive task to the AP integrated with MEC server. In order to accomplish the application faultlessly, we calculate out the optimal task offloading strategy in a time-division manner for a predetermined execution order under the constraints of limited computation and communication resources. The problem is formulated as an optimization problem that can minimize the energy consumption of mobile device while satisfying the constraints of computation tasks and mobile device resources. The optimization problem is equivalently transformed into solving a nonlinear equation with a linear inequality constraint by leveraging the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector corresponding to a given variable receiving from the outer layer. Numerical results demonstrate that the proposed algorithm has significant performance improvement than other baselines. The novel scheme not only reduces the difficulty of problem solving, but also obtains less energy consumption and better performance.

A Fully Integrated Dual-Band WLP CMOS Power Amplifier for 802.11n WLAN Applications

  • Baek, Seungjun;Ahn, Hyunjin;Ryu, Hyunsik;Nam, Ilku;An, Deokgi;Choi, Doo-Hyouk;Byun, Mun-Sub;Jeong, Minsu;Kim, Bo-Eun;Lee, Ockgoo
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.20-28
    • /
    • 2017
  • A fully integrated dual-band CMOS power amplifier (PA) is developed for 802.11n WLAN applications using wafer-level package (WLP) technology. This paper presents a detailed design for the optimal impedance of dual-band PA (2 GHz/5 GHz PA) output transformers with low loss, which is provided by using 2:2 and 2:1 output transformers for the 2 GHz PA and the 5 GHz PA, respectively. In addition, several design issues in the dual-band PA design using WLP technology are addressed, and a design method is proposed. All considerations for the design of dual-band WLP PA are fully reflected in the design procedure. The 2 GHz WLP CMOS PA produces a saturated power of 26.3 dBm with a peak power-added efficiency (PAE) of 32.9%. The 5 GHz WLP CMOS PA produces a saturated power of 24.7 dBm with a PAE of 22.2%. The PA is tested using an 802.11n signal, which satisfies the stringent error vector magnitude (EVM) and mask requirements. It achieved an EVM of -28 dB at an output power of 19.5 dBm with a PAE of 13.1% at 2.45 GHz and an EVM of -28 dB at an output power of 18.1 dBm with a PAE of 8.9% at 5.8 GHz.

User Bias Drift Social Recommendation Algorithm based on Metric Learning

  • Zhao, Jianli;Li, Tingting;Yang, Shangcheng;Li, Hao;Chai, Baobao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3798-3814
    • /
    • 2022
  • Social recommendation algorithm can alleviate data sparsity and cold start problems in recommendation system by integrated social information. Among them, matrix-based decomposition algorithms are the most widely used and studied. Such algorithms use dot product operations to calculate the similarity between users and items, which ignores user's potential preferences, reduces algorithms' recommendation accuracy. This deficiency can be avoided by a metric learning-based social recommendation algorithm, which learns the distance between user embedding vectors and item embedding vectors instead of vector dot-product operations. However, previous works provide no theoretical explanation for its plausibility. Moreover, most works focus on the indirect impact of social friends on user's preferences, ignoring the direct impact on user's rating preferences, which is the influence of user rating preferences. To solve these problems, this study proposes a user bias drift social recommendation algorithm based on metric learning (BDML). The main work of this paper is as follows: (1) the process of introducing metric learning in the social recommendation scenario is introduced in the form of equations, and explained the reason why metric learning can replace the click operation; (2) a new user bias is constructed to simultaneously model the impact of social relationships on user's ratings preferences and user's preferences; Experimental results on two datasets show that the BDML algorithm proposed in this study has better recommendation accuracy compared with other comparison algorithms, and will be able to guarantee the recommendation effect in a more sparse dataset.

A novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges

  • Wen-Qiang Liu;En-Ze Rui;Lei Yuan;Si-Yi Chen;You-Liang Zheng;Yi-Qing Ni
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.393-407
    • /
    • 2023
  • To assess structural condition in a non-destructive manner, computer vision-based structural health monitoring (SHM) has become a focus. Compared to traditional contact-type sensors, the advantages of computer vision-based measurement systems include lower installation costs and broader measurement areas. In this study, we propose a novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges. First, a deep learning model FairMOT is introduced to track the regions of interest (ROIs) that include joints to enhance the automation performance compared with traditional target tracking algorithms. To calculate the displacement of the tracked ROIs accurately, a normalized cross-correlation method is adopted to fine-tune the offset, while the Harris corner matching is utilized to correct the vibration displacement errors caused by the non-parallel between the truss plane and the image plane. Then, based on the advantages of the stochastic damage locating vector (SDLV) and Bayesian inference-based stochastic model updating (BI-SMU), they are combined to achieve the coarse-to-fine localization of the truss bridge's damaged elements. Finally, the severity quantification of the damaged components is performed by the BI-SMU. The experiment results show that the proposed method can accurately recognize the vibration displacement and evaluate the structural damage.

Alzheimer's Diagnosis and Generation-Based Chatbot Using Hierarchical Attention and Transformer (계층적 어탠션 구조와 트랜스포머를 활용한 알츠하이머 진단과 생성 기반 챗봇)

  • Park, Jun Yeong;Choi, Chang Hwan;Shin, Su Jong;Lee, Jung Jae;Choi, Sang-il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.333-335
    • /
    • 2022
  • 본 논문에서는 기존에 두 가지 모델이 필요했던 작업을 하나의 모델로 처리할 수 있는 자연어 처리 아키텍처를 제안한다. 단일 모델로 알츠하이머 환자의 언어패턴과 대화맥락을 분석하고 두 가지 결과인 환자분류와 챗봇의 대답을 도출한다. 일상생활에서 챗봇으로 환자의 언어특징을 파악한다면 의사는 조기진단을 위해 더 정밀한 진단과 치료를 계획할 수 있다. 제안된 모델은 전문가가 필요했던 질문지법을 대체하는 챗봇 개발에 활용된다. 모델이 수행하는 자연어 처리 작업은 두 가지이다. 첫 번째는 환자가 병을 가졌는지 여부를 확률로 표시하는 '자연어 분류'이고 두 번째는 환자의 대답에 대한 챗봇의 다음 '대답을 생성'하는 것이다. 전반부에서는 셀프어탠션 신경망을 통해 환자 발화 특징인 맥락벡터(context vector)를 추출한다. 이 맥락벡터와 챗봇(전문가, 진행자)의 질문을 함께 인코더에 입력해 질문자와 환자 사이 상호작용 특징을 담은 행렬을 얻는다. 벡터화된 행렬은 환자분류를 위한 확률값이 된다. 행렬을 챗봇(진행자)의 다음 대답과 함께 디코더에 입력해 다음 발화를 생성한다. 이 구조를 DementiaBank의 쿠키도둑묘사 말뭉치로 학습한 결과 인코더와 디코더의 손실함수 값이 유의미하게 줄어들며 수렴하는 양상을 확인할 수 있었다. 이는 알츠하이머병 환자의 발화 언어패턴을 포착하는 것이 향후 해당 병의 조기진단과 종단연구에 기여할 수 있음을 보여준다.

  • PDF

An Ensemble Classification of Mental Health in Malaysia related to the Covid-19 Pandemic using Social Media Sentiment Analysis

  • Nur 'Aisyah Binti Zakaria Adli;Muneer Ahmad;Norjihan Abdul Ghani;Sri Devi Ravana;Azah Anir Norman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.370-396
    • /
    • 2024
  • COVID-19 was declared a pandemic by the World Health Organization (WHO) on 30 January 2020. The lifestyle of people all over the world has changed since. In most cases, the pandemic has appeared to create severe mental disorders, anxieties, and depression among people. Mostly, the researchers have been conducting surveys to identify the impacts of the pandemic on the mental health of people. Despite the better quality, tailored, and more specific data that can be generated by surveys,social media offers great insights into revealing the impact of the pandemic on mental health. Since people feel connected on social media, thus, this study aims to get the people's sentiments about the pandemic related to mental issues. Word Cloud was used to visualize and identify the most frequent keywords related to COVID-19 and mental health disorders. This study employs Majority Voting Ensemble (MVE) classification and individual classifiers such as Naïve Bayes (NB), Support Vector Machine (SVM), and Logistic Regression (LR) to classify the sentiment through tweets. The tweets were classified into either positive, neutral, or negative using the Valence Aware Dictionary or sEntiment Reasoner (VADER). Confusion matrix and classification reports bestow the precision, recall, and F1-score in identifying the best algorithm for classifying the sentiments.

Prediction of rock slope failure using multiple ML algorithms

  • Bowen Liu;Zhenwei Wang;Sabih Hashim Muhodir;Abed Alanazi;Shtwai Alsubai;Abdullah Alqahtani
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.489-509
    • /
    • 2024
  • Slope stability analysis and prediction are of critical importance to geotechnical engineers, given the severe consequences associated with slope failure. This research endeavors to forecast the factor of safety (FOS) for slopes through the implementation of six distinct ML techniques, including back propagation neural networks (BPNN), feed-forward neural networks (FFNN), Takagi-Sugeno fuzzy system (TSF), gene expression programming (GEP), and least-square support vector machine (Ls-SVM). 344 slope cases were analyzed, incorporating a variety of geometric and shear strength parameters measured through the PLAXIS software alongside several loss functions to assess the models' performance. The findings demonstrated that all models produced satisfactory results, with BPNN and GEP models proving to be the most precise, achieving an R2 of 0.86 each and MAE and MAPE rates of 0.00012 and 0.00002 and 0.005 and 0.004, respectively. A Pearson correlation and residuals statistical analysis were carried out to examine the importance of each factor in the prediction, revealing that all considered geomechanical features are significantly relevant to slope stability. However, the parameters of friction angle and slope height were found to be the most and least significant, respectively. In addition, to aid in the FOS computation for engineering challenges, a graphical user interface (GUI) for the ML-based techniques was created.