• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.035 seconds

A Method of Feature Extraction on Motor Imagery EEG Using FLD and PCA Based on Sub-Band CSP (서브 밴드 CSP기반 FLD 및 PCA를 이용한 동작 상상 EEG 특징 추출 방법 연구)

  • Park, Sang-Hoon;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1535-1543
    • /
    • 2015
  • The brain-computer interface obtains a user's electroencephalogram as a replacement communication unit for the disabled such that the user is able to control machines by simply thinking instead of using hands or feet. In this paper, we propose a feature extraction method based on a non-selected filter by SBCSP to classify motor imagery EEG. First, we divide frequencies (4~40 Hz) into 4-Hz units and apply CSP to each Unit. Second, we obtain the FLD score vector by combining FLD results. Finally, the FLD score vector is projected onto the optimal plane for classification using PCA. We use BCI Competition III dataset IVa, and Extracted features are used as input for LS-SVM. The classification accuracy of the proposed method was evaluated using $10{\times}10$ fold cross-validation. For subjects 'aa', 'al', 'av', 'aw', and 'ay', results were $85.29{\pm}0.93%$, $95.43{\pm}0.57%$, $72.57{\pm}2.37%$, $91.82{\pm}1.38%$, and $93.50{\pm}0.69%$, respectively.

Gaze Detection by Computing Facial and Eye Movement (얼굴 및 눈동자 움직임에 의한 시선 위치 추적)

  • 박강령
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.79-88
    • /
    • 2004
  • Gaze detection is to locate the position on a monitor screen where a user is looking by computer vision. Gaze detection systems have numerous fields of application. They are applicable to the man-machine interface for helping the handicapped to use computers and the view control in three dimensional simulation programs. In our work, we implement it with a computer vision system setting a IR-LED based single camera. To detect the gaze position, we locate facial features, which is effectively performed with IR-LED based camera and SVM(Support Vector Machine). When a user gazes at a position of monitor, we can compute the 3D positions of those features based on 3D rotation and translation estimation and affine transform. Finally, the gaze position by the facial movements is computed from the normal vector of the plane determined by those computed 3D positions of features. In addition, we use a trained neural network to detect the gaze position by eye's movement. As experimental results, we can obtain the facial and eye gaze position on a monitor and the gaze position accuracy between the computed positions and the real ones is about 4.8 cm of RMS error.

A Classification Model for Illegal Debt Collection Using Rule and Machine Learning Based Methods

  • Kim, Tae-Ho;Lim, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.93-103
    • /
    • 2021
  • Despite the efforts of financial authorities in conducting the direct management and supervision of collection agents and bond-collecting guideline, the illegal and unfair collection of debts still exist. To effectively prevent such illegal and unfair debt collection activities, we need a method for strengthening the monitoring of illegal collection activities even with little manpower using technologies such as unstructured data machine learning. In this study, we propose a classification model for illegal debt collection that combine machine learning such as Support Vector Machine (SVM) with a rule-based technique that obtains the collection transcript of loan companies and converts them into text data to identify illegal activities. Moreover, the study also compares how accurate identification was made in accordance with the machine learning algorithm. The study shows that a case of using the combination of the rule-based illegal rules and machine learning for classification has higher accuracy than the classification model of the previous study that applied only machine learning. This study is the first attempt to classify illegalities by combining rule-based illegal detection rules with machine learning. If further research will be conducted to improve the model's completeness, it will greatly contribute in preventing consumer damage from illegal debt collection activities.

Secure Training Support Vector Machine with Partial Sensitive Part

  • Park, Saerom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, we propose a training algorithm of support vector machine (SVM) with a sensitive variable. Although machine learning models enable automatic decision making in the real world applications, regulations prohibit sensitive information from being used to protect privacy. In particular, the privacy protection of the legally protected attributes such as race, gender, and disability is compulsory. We present an efficient least square SVM (LSSVM) training algorithm using a fully homomorphic encryption (FHE) to protect a partial sensitive attribute. Our framework posits that data owner has both non-sensitive attributes and a sensitive attribute while machine learning service provider (MLSP) can get non-sensitive attributes and an encrypted sensitive attribute. As a result, data owner can obtain the encrypted model parameters without exposing their sensitive information to MLSP. In the inference phase, both non-sensitive attributes and a sensitive attribute are encrypted, and all computations should be conducted on encrypted domain. Through the experiments on real data, we identify that our proposed method enables to implement privacy-preserving sensitive LSSVM with FHE that has comparable performance with the original LSSVM algorithm. In addition, we demonstrate that the efficient sensitive LSSVM with FHE significantly improves the computational cost with a small degradation of performance.

Vector-Based Data Augmentation and Network Learning for Efficient Crack Data Collection (효율적인 균열 데이터 수집을 위한 벡터 기반 데이터 증강과 네트워크 학습)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • In this paper, we propose a vector-based augmentation technique that can generate data required for crack detection and a ConvNet(Convolutional Neural Network) technique that can learn it. Detecting cracks quickly and accurately is an important technology to prevent building collapse and fall accidents in advance. In order to solve this problem with artificial intelligence, it is essential to obtain a large amount of data, but it is difficult to obtain a large amount of crack data because the situation for obtaining an actual crack image is mostly dangerous. This problem of database construction can be alleviated with elastic distortion, which increases the amount of data by applying deformation to a specific artificial part. In this paper, the improved crack pattern results are modeled using ConvNet. Rather than elastic distortion, our method can obtain results similar to the actual crack pattern. By designing the crack data augmentation based on a vector, rather than the pixel unit used in general data augmentation, excellent results can be obtained in terms of the amount of crack change. As a result, in this paper, even though a small number of crack data were used as input, a crack database can be efficiently constructed by generating various crack directions and patterns.

Performance Improvement of Bearing Fault Diagnosis Using a Real-Time Training Method (실시간 학습 방법을 이용한 베어링 고장진단 성능 개선)

  • Cho, Yoon-Jeong;Kim, Jae-Young;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.4
    • /
    • pp.551-559
    • /
    • 2017
  • In this paper, a real-time training method to improve the performance of bearing fault diagnosis. The traditional bearing fault diagnosis cannot classify a condition which is not trained by the classifier. The proposed 4-step method trains and recognizes new condition in real-time, thereby it can classify the condition accurately. In the first step, we calculate the maximum distance value for each class by calculating a Euclidean distance between a feature vector of each class and a centroid of the corresponding class in the training information. In the second step, we calculate a Euclidean distance between a feature vector of new acquired data and a centroid of each class, and then compare with the allowed maximum distance of each class. In the third step, if the distance between a feature vector of new acquired data and a centroid of each class is larger than the allowed maximum distance of each class, we define that it is data of new condition and increase count of new condition. In the last step, if the count of new condition is over 10, newly acquired 10 data are assigned as a new class and then conduct re-training the classifier. To verify the performance of the proposed method, bearing fault data from a rotating machine was utilized.

Digital Signage service through Customer Behavior pattern analysis

  • Shin, Min-Chan;Park, Jun-Hee;Lee, Ji-Hoon;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.53-62
    • /
    • 2020
  • Product recommendation services that have been researched recently are only recommended through the customer's product purchase history. In this paper, we propose the digital signage service through customers' behavior pattern analysis that is recommending through not only purchase history, but also behavior pattern that customers take when choosing products. This service analyzes customer behavior patterns and extracts interests about products that are of practical interest. The service is learning extracted interest rate and customers' purchase history through the Wide & Deep model. Based on this learning method, the sparse vector of other products is predicted through the MF(Matrix Factorization). After derive the ranking of predicted product interest rate, this service uses the indoor signage that can interact with customers to expose the suitable advertisements. Through this proposed service, not only online, but also in an offline environment, it would be possible to grasp customers' interest information. Also, it will create a satisfactory purchasing environment by providing suitable advertisements to customers, not advertisements that advertisers randomly expose.

SVM-Based Incremental Learning Algorithm for Large-Scale Data Stream in Cloud Computing

  • Wang, Ning;Yang, Yang;Feng, Liyuan;Mi, Zhenqiang;Meng, Kun;Ji, Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3378-3393
    • /
    • 2014
  • We have witnessed the rapid development of information technology in recent years. One of the key phenomena is the fast, near-exponential increase of data. Consequently, most of the traditional data classification methods fail to meet the dynamic and real-time demands of today's data processing and analyzing needs--especially for continuous data streams. This paper proposes an improved incremental learning algorithm for a large-scale data stream, which is based on SVM (Support Vector Machine) and is named DS-IILS. The DS-IILS takes the load condition of the entire system and the node performance into consideration to improve efficiency. The threshold of the distance to the optimal separating hyperplane is given in the DS-IILS algorithm. The samples of the history sample set and the incremental sample set that are within the scope of the threshold are all reserved. These reserved samples are treated as the training sample set. To design a more accurate classifier, the effects of the data volumes of the history sample set and the incremental sample set are handled by weighted processing. Finally, the algorithm is implemented in a cloud computing system and is applied to study user behaviors. The results of the experiment are provided and compared with other incremental learning algorithms. The results show that the DS-IILS can improve training efficiency and guarantee relatively high classification accuracy at the same time, which is consistent with the theoretical analysis.

Performance Improvements of Brain-Computer Interface Systems based on Variance-Considered Machines (Variance-Considered Machine에 기반한 Brain-Computer Interface 시스템의 성능 향상)

  • Yeom, Hong-Gi;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.153-158
    • /
    • 2010
  • This paper showed the possibilities of performance improvement of Brain-Computer Interface (BCI) decreasing classification error rates of EEG signals by applying Variance-Considered Machine (VCM) which proposed in our previous study. BCI means controlling system such as computer by brain signals. There are many factors which affect performances of BCI. In this paper, we used suggested algorithm as a classification algorithm, the most important factor of the system, and showed the increased correct rates. For the experiments, we used data which are measured during imaginary movements of left hand and foot. The results indicated that superiority of VCM by comparing error rates of the VCM and SVM. We had shown excellence of VCM with theoretical results and simulation results. In this study, superiority of VCM is demonstrated by error rates of real data.

Mobility-Aware Interference Avoidance Scheme for Vehicular WLANs

  • Park, Lai-Hyuk;Na, Woong-Soo;Lee, Gun-Woo;Lee, Chang-Ha;Park, Chang-Yun;Cho, Yong-Soo;Cho, Sung-Rae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2272-2293
    • /
    • 2011
  • Communication technology of future networks is predicted to provide a large variety of services including WiFi service in vehicular network. In this paper, we assume that vehicles are embedded with WiMAX antenna and in-vehicle terminals receive WiMAX traffic through WiFi interface. This assumption will impose severe performance degradation due to interference among mobile BSSs when WiFi access points (APs) are densely located. Existing interference avoidance techniques cannot properly resolve the above problems and do not cope with dynamically moving vehicular scenario since they focus only on the fixed network topology. In this paper, we propose a mobility-aware interference avoidance scheme for WiFi services. The proposed scheme computes the interference duration by exploiting mobility vector and location information of neighboring APs. If the interference duration is not negligible, our scheme searches for another channel in order to avoid interference. However, if the interference duration is negligible, our scheme continues to use the channel to reduce switching overhead. To measure the effectiveness of the proposed scheme against other existing techniques, we evaluated performance by using OPNET simulator. Through the simulation, we obtained about 60% reduction in the maximum interference frequency and about 67% improvement in throughput. Furthermore, our scheme provides fair channel usage.