• 제목/요약/키워드: vector computer

검색결과 2,006건 처리시간 0.014초

Memory-to-Memory방식 벡터컴퓨터에서의 외연적 유한요소법의 벡터화 (Vectorization of an Explicit Finite Element Method on Memory-to-Memory Type Vector Computer)

  • 이지호;이재석
    • 전산구조공학
    • /
    • 제4권1호
    • /
    • pp.95-108
    • /
    • 1991
  • 외연적 유한요소법은 벡터처리에 적합한 구조를 가지고 있어 벡터컴퓨터를 이용하면 기존의 스칼라 컴퓨터에서보다 휠씬 빠르게 해석을 수행할 수 있다. 본 논문에서는 memory-to-memory방식의 벡터컴퓨터에서의 외연적 유한요소법의 효율적인 벡터화 방법을 제시하였다. 먼저 벡터컴퓨터의 구조적 특성과 무관하게 적용될 수 있는 일반적인 벡터화 기법을 고찰한 후 memory-to-memory방식의 벡터컴퓨터에 적합한 벡터화 기법을 개발하였다. 개발된 벡터화 기법의 유용성을 확인하기 위해 외연적 유한요소 프로그램인 DYNA3D를 memory-to-memory방식의 벡터컴퓨터인 HDS AS/XL V50에 이식한 결과 스칼라에 비해 2.4배 이상의 성능 향상을 얻을 수 있었다.

  • PDF

초음파 영상의 통계적 특징 벡터를 활용한 폐암 분류 (Analyzing Lung Cancer Using Statistical Feature Vector From Ultrasound Image)

  • 하수희;유재천
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.27-28
    • /
    • 2020
  • 본 논문에서는 초음파 영상의 통계적 특징벡터를 활용하여 폐암 분류를 제안한다. 폐암의 초음파 사진들을 비교 분석하여 각각의 label에 맞는 feature vector를 선별한다. 선택된 feature vector는 SVM을 이용하여 훈련 시킨 후, 최종적으로 폐암을 구별한다.

  • PDF

SDN 환경에서 Learning Vector Quantization 알고리즘을 이용한 분산 컨트롤러 (Distributed controller using Learning Vector Quantization algorithm in SDN environment)

  • 유승언;임환희;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.207-208
    • /
    • 2018
  • 본 논문에서는 기계학습의 하나인 Learning Vector Quantization 알고리즘을 이용하여 컨트롤러 순서를 정하는 모델을 제안하였다. 제안한 모델은 모든 컨트롤러 정보를 수집하여 Learning Vector Quantization의 LVQ1와 LVQ2 기법을 이용하여 컨트롤러의 순서를 정한다. 이를 통해, 효율적인 컨트롤러 동기화가 이뤄질 것으로 기대된다.

  • PDF

분산 게이트웨이 환경에서의 Support Vector Machine을 이용한 센서 데이터 할당 (Sensor Data Allocation using Support Vector Machine in Distributed-Gateway System)

  • 이태호;유승언;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.199-200
    • /
    • 2018
  • 본 논문에서는 IIoT(Industrial IoT) 환경의 분산 게이트웨이 시스템(Distributed-Gateway System)에서 사용되는 수 천 개 이상의 센서에서 데이터 전송을 받는 각 게이트웨이의 데이터 처리 속도를 향상시키고 작업 오류를 줄이기 위하여 SVM(Support Vector Machine) 알고리즘을 사용한 센서 데이터 할당 기법을 제안한다. 각 센서의 반복 측정 간격과 중요도에 따라 작업부하(Workload)를 구하고, 이를 순차 반복 비교를 통해 Sub-task 값을 구한다. 이렇게 구해진 Sub-task값을 기준으로 각 게이트웨이에 할당시킴으로써 신뢰성과 정확성, 신속성을 확보한다.

  • PDF

Inelastic vector finite element analysis of RC shells

  • Min, Chang-Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.139-148
    • /
    • 1996
  • Vector algorithms and the relative importance of the four basic modules (computation of element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simultaneous equations, and calculation of stresses and strains) of a finite element computer program for inelastic analysis of reinforced concrete shells are presented. Performance of the vector program is compared with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector program is 34 for the element stiffness matrices calculation, 25.3 for the assembly of global stiffness matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on a Gray Y-MP. The overall speedup factor is 30.9. When the equation solver alone is vectorized, which is computationally the most intensive part of a finite element program, a speedup factor of only 1.9 is achieved. When the rest of the program is also vectorized, a large additional speedup factor of 15.9 is attained. Therefore, it is very important that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers. The vector finite element computer program for inelastic analysis of RC shells with layered elements developed in the present study enabled us to perform mesh convergence studies. The vector program can be used for studying the ultimate behavior of RC shells and used as a design tool.

전기강판의 벡터 자기특성을 고려한 전기기기의 손실특성 해석 (Iron Loss Analysis of Electric Machine Considering Vector Magnetic Properties of Electrical Steel Sheet)

  • 윤희성;고창섭
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1813-1819
    • /
    • 2012
  • This paper presents vector magnetic properties of an electrical steel sheet (ESS) employed for electric machine and iron loss analysis considering the vector magnetic properties of the ESS. The vector magnetic properties of the ESS are measured by using a two-dimensional single sheet tester and modeled by an E&S vector hysteresis model to be applied to finite element method. The finite element analysis considering the vector magnetic properties is applied to iron loss analysis of a three-phase induction motor model, and the influences of the vector magnetic properties on the iron loss distribution are verified by comparing with numerical results from a typical B-H curve model.

Adaptive Motion Vector Smoothing for Improving Side Information in Distributed Video Coding

  • Guo, Jun;Kim, Joo-Hee
    • Journal of Information Processing Systems
    • /
    • 제7권1호
    • /
    • pp.103-110
    • /
    • 2011
  • In this paper, an adaptive motion vector smoothing scheme based on weighted vector median filtering is proposed in order to eliminate the motion outliers more effectively for improving the quality of side information in frame-based distributed video coding. We use a simple motion vector outlier reliability measure for each block in a motion compensated interpolated frame and apply weighted vector median filtering only to the blocks with unreliable motion vectors. Simulation results show that the proposed adaptive motion vector smoothing algorithm improves the quality of the side information significantly while maintaining low complexity at the encoder in frame-based distributed video coding.

SSF: Sentence Similar Function Based on word2vector Similar Elements

  • Yuan, Xinpan;Wang, Songlin;Wan, Lanjun;Zhang, Chengyuan
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1503-1516
    • /
    • 2019
  • In this paper, to improve the accuracy of long sentence similarity calculation, we proposed a sentence similarity calculation method based on a system similarity function. The algorithm uses word2vector as the system elements to calculate the sentence similarity. The higher accuracy of our algorithm is derived from two characteristics: one is the negative effect of penalty item, and the other is that sentence similar function (SSF) based on word2vector similar elements doesn't satisfy the exchange rule. In later studies, we found the time complexity of our algorithm depends on the process of calculating similar elements, so we build an index of potentially similar elements when training the word vector process. Finally, the experimental results show that our algorithm has higher accuracy than the word mover's distance (WMD), and has the least query time of three calculation methods of SSF.

Support Vector Machine Based on Type-2 Fuzzy Training Samples

  • Ha, Ming-Hu;Huang, Jia-Ying;Yang, Yang;Wang, Chao
    • Industrial Engineering and Management Systems
    • /
    • 제11권1호
    • /
    • pp.26-29
    • /
    • 2012
  • In order to deal with the classification problems of type-2 fuzzy training samples on generalized credibility space. Firstly the type-2 fuzzy training samples are reduced to ordinary fuzzy samples by the mean reduction method. Secondly the definition of strong fuzzy linear separable data for type-2 fuzzy samples on generalized credibility space is introduced. Further, by utilizing fuzzy chance-constrained programming and classic support vector machine, a support vector machine based on type-2 fuzzy training samples and established on generalized credibility space is given. An example shows the efficiency of the support vector machine.

Block Constrained Trellis Coded Vector Quantization of LSF Parameters for Wideband Speech Codecs

  • Park, Jung-Eun;Kang, Sang-Won
    • ETRI Journal
    • /
    • 제30권5호
    • /
    • pp.738-740
    • /
    • 2008
  • In this paper, block constrained trellis coded vector quantization (BC-TCVQ) is presented for quantizing the line spectrum frequency parameters of the wideband speech codec. Both a predictive structure and a safety-net concept are combined into BC-TCVQ to develop the predictive BC-TCVQ. The performance of this quantization is compared with that of the linear predictive coding vector quantizer used in the AMRWB codec, demonstrating reductions in spectral distortion.

  • PDF