Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
Geomechanics and Engineering
/
제23권1호
/
pp.61-69
/
2020
The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.
본 논문에서는 프랙탈 기반의 전송율 제어 가능을 갖는 동영상 압축 시스템을 제안한다. 기존의 프랙탈 압축방법의 부호화비트량 과다라는 단점을 극북하기위해, 제안하는 시스템은 이미지를 배경, 움직임 보상 및 프랙탈 코딩의 3가지로 분류하여 부호화 하였다. 부호화 되는 코드의 양을 줄이기 위하여 움직임 보상부의 움직임 벡터값은 가변길이 코드를 사용하고 프랙탈 변이값(offset)은 이전 프레임으로부터의 예측값과 최소 자승 근사화(least-square approximation)법으로 구한 값의 차값(difference)을 가변 길이 코드로 부호화하였다. 전송율 제어를 위해 현재의 비트 발생량과 밴드폭을 고려해서 화연 분할 문턱값(threshold)을 결정하는 알고리듬을 적용하였다. 전체 시스템의 실험 결과 동일한 화질에서 기존의 시스템에 비해 압축율이 18배이상 향상됨을 확인하였고, 전송율이 결정되어 있을 때의 전송율 제어가 이루어짐을 확인하였다.
대역 분할 부호화(Sub-Band Coding: SBC)방식은 계층적 피라미드(hierarchical pyramid) 구조를 갖고 있어 움직임 예측 시 상위 계층에서는 전체적인 이동특성을 추정하고 하위 계층에서는 국부적인 세부 이동 특성을 추정할 수가 있어 실제 동영상 움직임 보상 성능이 매우 우수하다. 이와 같은 계층적 이동보상피라미드를 이용한 기존의 저대역(low-band) 이동보상 피라미드 방식에는 다음 두 가지 문제점들로 인해 매우 심각한 화질 저하가 발생한다. 첫째는 저대역 이동보상 피라미드의 각 계층에서 양자화기가 포함된 부호화기를 사용할 경우 하위 계층의 재생 영상일수록 상위 계층에서 누적된 양자화 오차(quantization error)들을 그대로 포함하기 때문에 연속된 영상에서의 정확한 이동 보상이 어렵게 된다. 둘째는 피라미드의 계층적 구조 모순으로 상위 계층예서 잘못된 움직임 추정(motion estimation)은 하위 계층으로 진행될수록 막대한 성능 저하의 원인이 된다. 본 논문에서는 우선 대역분할 부호화 방식을 이용한 대역별 계층적 이동보상에 대한 수학적 분석을 하였으며, 이를 바탕으로 제안되었던 통과 대역(pass-band) 이동보상 피라미드 방식이 누적된 양자화 오차 요인이 제거됨으로서 기존의 저대역 이동보상 피라미드에 비해 성능이 우수하다는 것을 이론적으로 분석하여 이를 증명하였다. 또한 계층적 이동보상 피라미드에서 매우 중요한 최고 계층의 초기 이동벡터 추정을 위하여 에지 패턴 분류를 이용한 이동벡터 추정 방식을 새로이 제안하였으며, 실험 결과 성능의 우수함이 입증되었다.
CP(Counterpropagation) 알고리즘은 Kohonen의 경쟁 네트워크와 Grossberg의 아웃스타(Outstar) 구조의 결합으로 이루어진 것으로 패턴 매칭, 패턴 분류, 통계적인 분석 및 데이터 압축 등 활용분야가 다양하고, 다른 신경망 모델에 비해 학습이 매우 빠르다는 장점이 있다. 그러나 CP 알고리즘은 충분한 경쟁층의 수가 설정되지 않아 경쟁층에서 학습이 불안정하고, 다양한 패턴으로 구성된 경우에는 패턴들을 정확히 분류할 수 없는 경우가 발생한다. 그리고 CP 알고리즘은 출력층에서 연결 강도를 조정할 때, 학습률에 따라 학습 및 인식 성능이 좌우된다. 본 논문에서는 효과적인 패턴인식을 위해 다수 경쟁층을 설정하고, 입력 벡터와 승자 뉴런의 대표 벡터간의 차이와 승자 뉴런의 빈도수를 학습률 조정에 반영하고 학습률을 동적으로 조정하여 경쟁층에서 안정적으로 학습되도록 하고, 출력층의 연결강도를 조정할 때 모멘텀(Momentum) 방법을 적용한다. 제안된 CP 학습 성능을 확인하기 위해서 실제 여권에서 추출된 개별 코드를 대상으로 실험한 결과, 개선된 CP 알고리즘이 기존의 CP 알고리즘보다 학습 성능, 분류의 정확성 및 인식 성능이 개선된 것을 확인하였다.
웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델 등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러 컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층 Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여 논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.
H.264/AVC는 ITU-T와 ISO/IEC의 최신 동영상 압축 코덱 규격으로 MPEG-2보다 2배 이상의 압축률과 고화질로 최근 그 적용 영역을 넓혀 가고 있다. 본 논문에서는 H.264/AVC에서 압축 성능을 높이기 위해 사용된 기법중 하나인 인트라 예측에 대해 설명하고 인트라 예측 모드 연산을 효율적으로 수행하기 위한 인트라 예측기의 구조를 제안하다. 제안된 인트라 예측기는 공통 연산기와 전처리 연산기를 사용하여 연산량을 줄이고, 효율적인 레지스터를 사용하여 외부 메모리와의 접근을 최소화 하였다. 제안된 인트라 예측기는 Verilog-HDL을 이용하여 설계하였으며 적합한 테스트 벡터를 이용하여 검증 되었다. 제안된 인트라 예측기는 기존에 비해 약 60%의 향상된 결과를 얻었다.
This paper presents a novel technique that combines machine learning (ML) with moth-flame optimization (MFO) methods to predict the axial compressive strength (ACS) of concrete filled double skin steel tubes (CFDST) columns. The proposed model is trained and tested with a dataset containing 125 tests of the CFDST column subjected to compressive loading. Five ML models, including extreme gradient boosting (XGBoost), gradient tree boosting (GBT), categorical gradient boosting (CAT), support vector machines (SVM), and decision tree (DT) algorithms, are utilized in this work. The MFO algorithm is applied to find optimal hyperparameters of these ML models and to determine the most effective model in predicting the ACS of CFDST columns. Predictive results given by some performance metrics reveal that the MFO-CAT model provides superior accuracy compared to other considered models. The accuracy of the MFO-CAT model is validated by comparing its predictive results with existing design codes and formulae. Moreover, the significance and contribution of each feature in the dataset are examined by employing the SHapley Additive exPlanations (SHAP) method. A comprehensive uncertainty quantification on probabilistic characteristics of the ACS of CFDST columns is conducted for the first time to examine the models' responses to variations of input variables in the stochastic environments. Finally, a web-based application is developed to predict ACS of the CFDST column, enabling rapid practical utilization without requesting any programing or machine learning expertise.
H.264|MPEG-4 AVC는 ITU-T와 ISO/IEC 공동으로 결성된 JVT (Joint Video Team)에 의해서 정의된 가장 최신의 영상 압축 표준이다. H.264|MPE6-4 AVC는 효율적 부호화를 위하여 여러 방법이 제안되었는데, 화면 간 프레임(P-frame)에서의 화면 내 예측(Intra Prediction)의 경우 매크로블록마다 후보 모드 결정 및 율-왜곡 비용 계산에 따른 부호화 시간의 급격한 증가를 초래하여 고속화 방법의 필요성이 대두되고 있다 본 논문에서는 $16{\times}16$과 $4{\times}4$ 화면 내 예측 부호화 결과를 바탕으로, 두 예측 결과의 통계적 상관관계를 규정한 후, 이를 활용한 $4{\times}4$ 화면 내 예측의 후보 모드 수를 감소시키는 방법을 제안한다. 구체적으로는 화면 간 예측(Inter Prediction) 단계에서 결정된 움직임 벡터 정보를 이용하여 현재 매크로블록의 화면 내 예측이 필요한지를 미리 판정한 후, 매 화면 내 프레임(I-frame)의 $16{\times}16$ 화면 내 예측의 최종 후보 모드에 따른 $4{\times}4$ 화면 내 예측의 최종 결정 모드들의 발생분포를 누적 확률 순으로 배열하여 특정 누적 확률에 도달하기까지 만의 후보 모드들만을 예측에 포함하는 참조 테이블을 부호화 과정 중에 생성한 후 동일 GOP 내에 위치하는 모든 화면 간 프레임의 화면 내 예측 시 활용하게 된다. 제안하는 방법은 H.264|MPEG-4 AVC의 참조 소프트웨어인 JM11.0을 사용하여 실험하였으며, 총 부호화 시간을 최대 51.24% 감소시킬 수 있었으며 PSNR 감소와 비트율 증가는 무시할 정도의 작은 변화만 있었다.
많은 경우의 예측 비디오 압축 표준에서는, BMA에 의해 매크로 블록당 하나의 움직임 벡터가 계산되는 방식인 BMC방식이 널리 사용되고 있다. 그러나 BMC에 의해 예측된 움직임 벡터 필드는 블록당 하나의 움직임 벡터를 사용하기 때문에 불연속적이며, 불연속적인 움직임 벡터 필드로 인해 블록화 현상을 나타낸다. 따라서 이를 제거하는 효과적인 방법은 움직임 벡터 필드를 평활화(smoothing)하는 방법일 것이다. 최적 평활화 과정은 비디오 시퀀스의 움직임 종류에 따라 다를 것이다. 본 논문에서는 움직임 벡터를 평활화하는 몇 개의 방법들을 고려할 것이다. 어떠한 방법이든 BMA로 구한 움직임 벡터는 더 이상 최적화된 움직임 벡터가 아닐 것이므로, BFD(displaced frame difference)의 놈(norm)을 최소화하는 최적 움직임 벡터를 찾아야 한다. 본 논문에서는 conjugate gradient 알고리즘을 사용하여 DFD의 놈을 최소화하는 최적움직임 벡터를 찾는 통합 알고리즘을 제안한다. 이 통합 알고리즘은 ATMC(affine transform based motion compensation), BTMC(bilinear transform based motion compensation), 그리고 본 논문에서 제안하는 FMC(filtered motion compensation)의 세가지 방식에 대하여 적용되고 BMC에 대비해서 평가되어 졌다.
모바일 기기의 성능 및 화면, 무선 네트워크의 속도 등의 제약으로 모바일 컨텐츠 개발에는 많은 어려움이 있다. 단순히 유선 웹상에서 기존에 서비스 되던 컨텐츠의 가시적인 축소만으로는 양질의 컨텐츠 제작이 어렵다. 빠르게 변화하는 모바일 컨텐츠 시장에 적응하기 위해서는 컨텐츠 특성에 최적화된 데이타 표현 기법 및 저작 도구의 개발이 이루어져야 한다. 본 논문에서는 모바일 기기 상에서의 한자 학습을 위한 적은 용량의 모바일 컨텐츠 및 저작 도구를 개발하였다. 본 연구에서 개발한 모바일 컨텐츠는 단순히 한자 이미지와 설명 정보를 보여주는 것이 아니라, 한자 획순으로 붓으로 쓰는 것과 같은 애니메이션 효과를 줄 수 있다. 또한 저작 도구는 사용자가 그래픽이나 한자, 모바일 프로그래밍에 관한 전문가가 아니더라도 쉽고 빠르게 컨텐츠를 생성할 수 있는 개발 환경을 제공한다. 본 논문은 트루타입 폰트로부터 글자 모양을 획득하여, 간단한 사용자 입력으로 획 분할 및 획 순서 정보를 얻고, 자동으로 획의 방향을 추출, 각 획마다 붓으로 쓰는 효과의 애니메이션을 생성한다. 다음으로 모바일 기기에서의 효율적인 글자 애니메이션을 위해 애니메이션 데이타를 압축한다. 본 논문은 한자뿐 아니라, 한글 또는 다른 형태의 그래픽에도 이용될 수 있으며, 향후 획 분할 및 획 순서 결정을 자동화하는 방법을 연구하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.