• Title/Summary/Keyword: vascular network

Search Result 106, Processing Time 0.028 seconds

Involvement of Protein Kinase C-δ in Vascular Permeability in Acute Lung Injury

  • Ahn, Jong J.;Jung, Jong P.;Park, Soon E.;Lee, Minhyun;Kwon, Byungsuk;Cho, Hong R.
    • IMMUNE NETWORK
    • /
    • v.15 no.4
    • /
    • pp.206-211
    • /
    • 2015
  • Pulmonary edema is a major cause of mortality due to acute lung injury (ALI). The involvement of protein kinase C-${\delta}$ (PKC-${\delta}$) in ALI has been a controversial topic. Here we investigated PKC-${\delta}$ function in ALI using PKC-${\delta}$ knockout (KO) mice and PKC inhibitors. Our results indicated that although the ability to produce proinflammatory mediators in response to LPS injury in PKC-${\delta}$ KO mice was similar to that of control mice, they showed enhanced recruitment of neutrophils to the lung and more severe pulmonary edema. PKC-${\delta}$ inhibition promoted barrier dysfunction in an endothelial cell layer in vitro, and administration of a PKC-${\delta}$-specific inhibitor significantly increased steady state vascular permeability. A neutrophil transmigration assay indicated that the PKC-${\delta}$ inhibition increased neutrophil transmigration through an endothelial monolayer. This suggests that PKC-${\delta}$ inhibition induces structural changes in endothelial cells, allowing extravasation of proteins and neutrophils.

Feasibility of simultaneous measurement of cytosolic calcium and hydrogen peroxide in vascular smooth muscle cells

  • Chang, Kyung-Hwa;Park, Jung-Min;Lee, Moo-Yeol
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.600-605
    • /
    • 2013
  • Interplay between calcium ions ($Ca^{2+}$) and reactive oxygen species (ROS) delicately controls diverse pathophysiological functions of vascular smooth muscle cells (VSMCs). However, details of the $Ca^{2+}$ and ROS signaling network have been hindered by the absence of a method for dual measurement of $Ca^{2+}$ and ROS. Here, a real-time monitoring system for $Ca^{2+}$ and ROS was established using a genetically encoded hydrogen peroxide indicator, HyPer, and a ratiometric $Ca^{2+}$ indicator, fura-2. For the simultaneous detection of fura-2 and HyPer signals, 540 nm emission filter and 500 nm~ dichroic beamsplitter were combined with conventional exciters. The wide excitation spectrum of HyPer resulted in marginal cross-contamination with fura-2 signal. However, physiological $Ca^{2+}$ transient and hydrogen peroxide were practically measurable in HyPer-expressing, fura-2-loaded VSMCs. Indeed, distinct $Ca^{2+}$ and ROS signals could be successfully detected in serotonin-stimulated VSMCs. The system established in this study is applicable to studies of crosstalk between $Ca^{2+}$ and ROS.

MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology

  • Kim, Jongmin
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.65-72
    • /
    • 2018
  • The endothelial to mesenchymal transition (EndMT) is a newly recognized, fundamental biological process involved in development and tissue regeneration, as well as pathological processes such as the complications of diabetes, fibrosis and pulmonary arterial hypertension. The EndMT process is tightly controlled by diverse signaling networks, similar to the epithelial to mesenchymal transition. Accumulating evidence suggests that microRNAs (miRNAs) are key regulators of this network, with the capacity to target multiple messenger RNAs involved in the EndMT process as well as in the regulation of disease progression. Thus, it is highly important to understand the molecular basis of miRNA control of EndMT. This review highlights the current fund of knowledge regarding the known links between miRNAs and the EndMT process, with a focus on the mechanism that regulates associated signaling pathways and discusses the potential for the EndMT as a therapeutic target to treat many diseases.

Hypertension and cognitive dysfunction: a narrative review

  • Eun-Jin Cheon
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.3
    • /
    • pp.225-232
    • /
    • 2023
  • Cognitive dysfunction is relatively less considered a complication of hypertension. However, there is sufficient evidence to show that high blood pressure in middle age increases the risk of cognitive decline and dementia in old age. The greatest impact on cognitive function in those with hypertension is on executive or frontal lobe function, similar to the area most damaged in vascular dementia. Possible cognitive disorders associated with hypertension are vascular dementia, Alzheimer disease, and Lewy body dementia, listed in decreasing strength of association. The pathophysiology of cognitive dysfunction in individuals with hypertension includes brain atrophy, microinfarcts, microbleeds, neuronal loss, white matter lesions, network disruption, neurovascular unit damage, reduced cerebral blood flow, blood-brain barrier damage, enlarged perivascular damage, and proteinopathy. Antihypertensive drugs may reduce the risk of cognitive decline and dementia. Given the high prevalence of dementia and its impact on quality of life, treatment of hypertension to reduce cognitive decline may be a clinically relevant intervention.

Transcatheter Embolotherapy of Giant Pulmonary Arteriovenous Malformation Using Amplatzer® Vascular Plug (Amplatzer® 혈관폐색장치를 이용한 거대 폐동정맥기형 색전술 1예)

  • Jung, Ki Hwan;Lee, Seung Hwa;Shin, Chol;Kim, Je Hyeong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.1
    • /
    • pp.52-58
    • /
    • 2009
  • Pulmonary arteriovenous malformation (PAVM) is a rare pulmonary vascular anomaly due to an abnormal communication between the pulmonary artery and vein. The most common presenting symptom is a dyspnea on exertion related to this right-to-left shunt. If left untreated, PAVM has been known to result in serious complications. Incomplete pulmonary capillary network can be the cause of cerebral abscesses and other noninfectious neurological complications, such as stroke and transient ischemic attacks due to paradoxic embolism Transcatheter embolotherapy, using coils or balloons, has replaced surgical resection as the treatment of choice for PAVM. However, the risk of device embolization has limited the use of coil embolotherapy, while the size of PAVM is huge. Recently, Amplatzer$^{(R)}$ Vascular Plug has been proposed as an alternative endovascular occlusion device for arteriovenous malformation. We report a case of 81-year-old male patient with a giant PAVM, which was successfully treated by transcatheter embolotherapy using the Amplatzer$^{(R)}$ Vascular Plug.

Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights From Rheumatoid Arthritis to Multiple Sclerosis

  • Young eun Lee;Seung-Hyo Lee;Wan-Uk Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.10.1-10.17
    • /
    • 2024
  • In this review, we will explore the intricate roles of cytokines and vascular endothelial growth factors in autoimmune diseases (ADs), with a particular focus on rheumatoid arthritis (RA) and multiple sclerosis (MS). AD is characterized by self-destructive immune responses due to auto-reactive T lymphocytes and Abs. Among various types of ADs, RA and MS possess inflammation as a central role but in different sites of the patients. Other common aspects among these two ADs are their chronicity and relapsing-remitting symptoms requiring continuous management. First factor inducing these ADs are cytokines, such as IL-6, TNF-α, and IL-17, which play significant roles in the pathogenesis by contributing to inflammation, immune cell activation, and tissue damage. Secondly, vascular endothelial growth factors, including VEGF and angiopoietins, are crucial in promoting angiogenesis and inflammation in these two ADs. Finally, placental growth factor (PlGF), an emerging factor with bi-directional roles in angiogenesis and T cell differentiation, as we introduce as an "angio-lymphokine" is another key factor in ADs. Thus, while angiogenesis recruits more inflammatory cells into the peripheral sites, cytokines secreted by effector cells play critical roles in the pathogenesis of ADs. Various therapeutic interventions targeting these soluble molecules have shown promise in managing autoimmune pathogenic conditions. However, delicate interplay between cytokines, angiogenic factors, and PlGF has more to be studied when considering their complementary role in actual pathogenic conditions. Understanding the complex interactions among these factors provides valuable insights for the development of innovative therapies for RA and MS, offering hope for improved patient outcomes.

The Past, Present and Future of Imaging Enhanced Endoscopy in Colon Tumor (대장 종양에서의 영상 증강 내시경 이용의 과거와 현재, 미래)

  • Kyueng-Whan Min;One-Zoong Kim
    • Journal of Digestive Cancer Research
    • /
    • v.12 no.2
    • /
    • pp.90-101
    • /
    • 2024
  • The incidence of colon cancer in South Korea has recently been the highest among gastrointestinal cancers. Early diagnosis is critical, and image-enhanced endoscopy (IEE) is a key diagnostic method. Colon tumors primarily include serrated polyps, adenomatous polyps, and colon cancer. Early endoscopic techniques relied on simple visual inspection for diagnosis, with tumor size and shape being the primary considerations. Low-resolution images made these methods ineffective for detecting small or early-stage lesions. IEE now enables detailed examination using high-resolution images and various color and structure analyses. Techniques like narrow band imaging (NBI) allow precise observation of vascular patterns and surface structures. Hyperplastic polyps often appear similar in color to the surrounding mucosa, with no visible vascular pattern. Sessile serrated lesions have a cloudy surface with distinct boundaries and irregular patterns, often with black spots in the crypts. Adenomatous polyps are darker brown, with a visible white epithelial network and various pit patterns. Magnified images help differentiate between low- and high-grade dysplasia, with low-grade showing regular patterns and high-grade showing increased irregularities. The NBI International Colorectal Endoscopic classification identifies malignant colon tumors as brown or dark brown with disorganized vascular patterns. The Japan NBI Expert Team classification includes loose vascular areas and disrupted thick vessels. The Workgroup serrAted polypS and Polyposis classification aids in differentiating between hyperplastic polyps and sessile serrated lesions/adenomas when deciding whether to resect polyps larger than 5 mm. Suspected high-grade dysplasia warrants endoscopic submucosal dissection and follow-up. Future advancements in IEE are expected to further enhance early detection and diagnostic accuracy.

EFFECT OF ARTERIAL REPAIR AND PATENCY AFTER MICROVASCULAR ANASTOMOSIS WITH TOPICAL IRRIGATION OF VARIOUS ANTI-THROMBUS DRUGS (수종의 항혈전제의 국소 세척이 미세혈관문합의 동맥 치유 및 개존에 미치는 영향)

  • Choi, Yong-Chul;Kim, Kyung-Wook;Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.2
    • /
    • pp.117-128
    • /
    • 2006
  • Free flap transplantation with microvascular anastomosis has been successfully performed by development of surgical technique, materials and postoperative monitoring equipments of flap. But success rate of microvascular anastomosis is influenced by various factors, and failure rate is about 5-10%. The most influential factor for success rate is surgical technique and other factors that influence failure of microvascular anastomosis are ischemic time of free flap, thrombus formation of anastomosis region and vascular spasm. Many studies has been published in microvascular anastomosis with histologic effect for irrigating solution. But local irrigation solution has been used clinically in microvascular anastomosis, the comparison with each solution, microhistological study for endothelial cell repair and vascular patency has not been reported. The heparin which is anti-thrombotic agent, and urokinase which is fibrinolytic agent are used for this study. Vascular patency and thrombus formation in experimental micro-arterial anastomosis, and endothelial repair were observed with histologic analysis, scanning electron microscopy, transmission electron microscopic examination. The results were obtained as follows: 1. In vascular patency test in 30 minute and 7 days after micro-arterial anastomosis, equal effects of good vascular patency were obtained in group of local irrigation with heparin and urokinase. 2. In thrombus formation in 7 days after micro-arterial anastomosis, equal effects of minimal thrombus formation were obtained in group of local irrigation with heparin and urokinase. 3. In toluidin blue staining in 7 days after micro-arterial anastomosis, local destruction of endothelial cell and inner elastic lamina were seen and endothelial repair was not seen. 4. In scanning electron microscope examination in 7 days after micro-arterial anastomosis, endothelial cell was not seen in peripheral to suture materials, thrombus associated fibrin network was observed. 5. In transmission electron microscope examination in 7 days after micro-arterial anastomosis, inflammatory cell was seen within smooth muscle cells in site of endothelial cell destruction, smooth muscle cell around suture material were arranged irregularly, some collagenous change were seen. From the results obtained in this study, same results of good vascular patency and anti-thrombotic effect of heparin and urokinase were obtained as a local irrigation solution, and repair of endothelial cell was not seen in 7 days after micro-arterial anastomosis.

Effects of exploration and molecular mechanism of CsV on eNOS and vascular endothelial functions

  • Zuo, Deyu;Jiang, Heng;Yi, Shixiong;Fu, Yang;Xie, Lei;Peng, Qifeng;Liu, Pei;Zhou, Jie;Li, Xunjia
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.501-514
    • /
    • 2022
  • This study aimed to investigate the effects and potential mechanisms of Chikusetsusaponin V (CsV) on endothelial nitric oxide synthase (eNOS) and vascular endothelial cell functions. Different concentrations of CsV were added to animal models, bovine aorta endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs) cultured in vitro. qPCR, Western blotting (WB), and B ultrasound were performed to explore the effects of CsV on mouse endothelial cell functions, vascular stiffness and cellular eNOS mRNA, protein expression and NO release. Bioinformatics analysis, network pharmacology, molecular docking and protein mass spectrometry analysis were conducted to jointly predict the upstream transcription factors of eNOS. Furthermore, pulldown and ChIP and dual luciferase assays were employed for subsequent verification. At the presence or absence of CsV stimulation, either overexpression or knockdown of purine rich element binding protein A (PURA) was conducted, and PCR assay was employed to detect PURA and eNOS mRNA expressions, Western blot was used to detect PURA and eNOS protein expressions, cell NO release and serum NO levels. Tube formation experiment was conducted to detect the tube forming capability of HUVECs cells. The animal vasodilation function test detected the vasodilation functions. Ultrasonic detection was performed to determine the mouse aortic arch pulse wave velocity to identify aortic stiffness. CsV stimulus on bovine aortic cells revealed that CsV could upregulate eNOS protein levels in vascular endothelial cells in a concentration and time dependent manner. The expression levels of eNOS mRNA and phosphorylation sites Ser1177, Ser633 and Thr495 increased significantly after CsV stimulation. Meanwhile, CsV could also enhance the tube forming capability of HUVECs cells. Following the mice were gavaged using CsV, the eNOS protein level of mouse aortic endothelial cells was upregulated in a concentration- and time-dependent manner, and serum NO release and vasodilation ability were simultaneously elevated whereas arterial stiffness was alleviated. The pulldown, ChIP and dual luciferase assays demonstrated that PURA could bind to the eNOS promoter and facilitate the transcription of eNOS. Under the conditions of presence or absence of CsV stimulation, overexpression or knockdown of PURA indicated that the effect of CsV on vascular endothelial function and eNOS was weakened following PURA gene silence, whereas overexpression of PURA gene could enhance the effect of CsV upregulating eNOS expression. CsV could promote NO release from endothelial cells by upregulating the expression of PURA/eNOS pathway, improve endothelial cell functions, enhance vasodilation capability, and alleviate vessel stiffness. The present study plays a role in offering a theoretical basis for the development and application of CsV in vascular function improvement, and it also provides a more comprehensive understanding of the pharmacodynamics of CsV.

THE USE OF ENDOSCOPY IN ENUCLEATION OF JAW CYSTS (악골 낭종 적출술시 내시경의 이용)

  • Kim, Young-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.1
    • /
    • pp.61-64
    • /
    • 2001
  • This study evaluated the use of endoscopy to examine jaw cysts during the operation. Fifteen jaw cysts were explored with a endoscope immediately before and after enucleation. Endoscopic findings were evaluated and recorded with video tape. Before enucleation, there were many white fibrous floating materials within the cystic cavity. Cystic lining showed smooth and regular appearance with capillary network. However, there were some fibrous scar tissues and irregular architecture in preoperative infection. After enucleation, there were white shiny bony surfaces with fresh vascular network. In some cases, floating fibrous tissues remained after removal.

  • PDF