• Title/Summary/Keyword: vascular endothelial growth

Search Result 572, Processing Time 0.029 seconds

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.

Effects of quercetin on cell differentiation and adipogenesis in 3T3-L1 adipocytes

  • Hong, Seo Young;Ha, Ae Wha;Kim, Wookyoung
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.444-455
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Adipocytes undergo angiogenesis to receive nutrients and oxygen needed for adipocyte' growth and differentiation. No study relating quercetin with angiogenesis in adipocytes exists. Therefore, this study investigated the role of quercetin on adipogenesis in 3T3-L1 cells, acting through matrix metalloproteinases (MMPs). MATERIALS/METHODS: After proliferating preadipocytes into adipocytes, various quercetin concentrations were added to adipocytes, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to evaluate cell proliferation. Glycerol-3-phosphate dehydrogenase (GPDH) activity was investigated as an indicator of fat accumulation. The mRNA expressions of transcription factors related to adipocyte differentiation, CCAAT/enhancer-binding proteins (C/EBPs), peroxisomal proliferatoractivated receptors (PPAR)-γ, and adipocyte protein 2 (aP2), were investigated. The mRNA expressions of proteins related to angiogenesis, vascular endothelial growth factor (VEGF)-α, vascular endothelial growth factor receptor (VEGFR)-2, MMP-2, and MMP-9, were investigated. Enzyme activities and concentrations of MMP-2 and MMP-9 were also measured. RESULTS: Quercetin treatment suppressed fat accumulation and the expressions of adipocyte differentiation-related genes (C/EBPα, C/EBPβ, PPAR-γ, and aP2) in a concentration-dependent manner in 3T3-L1 cells. Quercetin treatments reduced the mRNA expressions of VEGF-α, VEGFR-2, MMP-2, and MMP-9 in 3T3-L1 cells. The activities and concentrations of MMP-2 and MMP-9 were also decreased significantly as the concentration of quercetin increased. CONCLUSIONS: The results confirm that quercetin inhibits adipose tissue differentiation and fat accumulation in 3T3-L1 cells, which could occur through inhibition of the angiogenesis process related to MMPs.

Retinopathy of prematurity: a review of epidemiology and current treatment strategies

  • Hong, Eun Hee;Shin, Yong Un;Cho, Heeyoon
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.3
    • /
    • pp.115-126
    • /
    • 2022
  • Retinopathy of prematurity (ROP) is among the most common causes of childhood blindness. Three phases of ROP epidemics have been observed worldwide since ROP was first described in the 1940s. Despite advances in neonatal care, the occurrence of ROP and associated visual impairment has been increasing somewhere on Earth and remains difficult to control. Conventional treatment options for preventing ROP progression include retinal ablation using cryotherapy or laser therapy. With the emergence of anti-vascular endothelial growth factor (anti-VEGF) treatment for ocular diseases, the efficacy and safety of anti-VEGF therapy for ROP have recently been actively discussed. In the advanced stage of ROP with retinal detachment, surgical treatment including scleral buckling or vitrectomy is needed to maintain or induce retinal attachment. At this stage, the visual outcome is usually poor despite successful anatomical retinal attachment. Therefore, preventing ROP progression by timely screening examinations and treatment remains the most important part of ROP management.

Retention of Endothelial Cells adhered on Polyurethane Surface under Flow Condition

  • Chang, Jun-Keun;Chang, Hyun-A;Kim, Jin-Hee;Kim, Jong-Won;Han, Dong-Chul;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.355-364
    • /
    • 1996
  • Construction of the stable monolayer of endothelial cells onto physicochemically modified polymeric surFace is one of the appropriate method to develop the small caliber vascular graft with the long-term patency. In this study, we constructed the monolayer of endothelial cells on the fibronectin rind the extracellular matrix-coated polyurethane surface derived from human fibroblast cells. To elucidate the adhesion strength of endothelial cells on the extracellular matrix-coated polyurethane, a laminar flow chamber apparatus was developed to exposure the shear stress on the apical membrane of ondothelial cells. Endothelial cells show the strongest adhesion after two days of seeding onto the fibronectin-coated polyurethane surface, whereas endothelial cells on the extracellular matrix derived from the human flbroblast cells show the minimal doubling time of cellular growth.

  • PDF

Endothelial miR-26a regulates VEGF-Nogo-B receptor-mediated angiogenesis

  • Jo, Ha-neul;Kang, Hyesoo;Lee, Aram;Choi, Jihea;Chang, Woochul;Lee, Myeong-Sok;Kim, Jongmin
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.384-389
    • /
    • 2017
  • The Nogo-B receptor (NgBR) is necessary for not only Nogo-B-mediated angiogenesis but also vascular endothelial growth factor (VEGF) -induced angiogenesis. However, the molecular mechanisms underlying the regulatory role of the VEGF-NgBR axis in angiogenesis are not fully understood. Here, we report that miR-26a serves as a critical regulator of VEGF-mediated angiogenesis through directly targeting NgBR in endothelial cells (ECs). Stimulation of ECs by VEGF increased the expression of NgBR and decreased the expression of miR-26a. In addition, miR-26a decreased the VEGF-induced migration and proliferation of ECs. Moreover, miR-26a overexpression in ECs decreased the VEGF-induced phosphorylation of the endothelial nitric oxide synthase (eNOS) and the production of nitric oxide, which is important for angiogenesis. Overall, these data suggest that miR-26a plays a key role in VEGF-mediated angiogenesis through the modulation of eNOS activity, which is mediated by its ability to regulate NgBR expression by directly targeting the NgBR 3'-UTR.

Expression Levels of Vascular Endothelial Growth Factors A and C in Patients with Peptic Ulcers and Gastric Cancer

  • Taghizadeh, Shirin;Sankian, Mojtaba;Ajami, Abolghasem;Tehrani, Mohsen;Hafezi, Nasim;Mohammadian, Rajeeh;Farazmandfar, Touraj;Hosseini, Vahid;Abbasi, Ali;Ajami, Maryam
    • Journal of Gastric Cancer
    • /
    • v.14 no.3
    • /
    • pp.196-203
    • /
    • 2014
  • Purpose: Vascular endothelial growth factor (VEGF) is one of the most important growth factors for metastatic tumors. To clarify the role of VEGF-A and C in patients with peptic ulcer disease (PUD) or gastric cancer (GC), we evaluated the expression levels of these two molecules. We also analyzed the effect of Helicobacter pylori infection on VEGF-A and C expression levels. Materials and Methods: Patients with dyspepsia who needed diagnostic endoscopy were selected and divided into three groups: nonulcer dyspepsia (NUD), PUD, and GC, according to their endoscopic and histopathological results. Fifty-two patients with NUD, 50 with PUD, and 38 with GC were enrolled in this study. H. pylori infection was diagnosed by the rapid urease test. After RNA extraction and synthesis of cDNA, the expression levels of VEGF-A and C were determined by quantitative reverse transcriptase polymerase chain reaction. Results: The VEGF-C expression level in the PUD and GC groups was significantly higher than that in the NUD group. Moreover, the VEGF-A expression level in the PUD and GC groups was higher than in the NUD group, although the differences were not statistically significant. Significant positive correlations were also observed between the expression levels of these two molecules in the PUD and GC groups. In addition, the expression levels of these two molecules were higher in H. pylori positive patients with PUD or GC than in H. pylori negative patients of the same groups; however, these differences did not reach statistical significance. Conclusions: Up-regulation of VEGF-C expression during gastric mucosal inflammation may play a role in the development of peptic ulcers or GC.

Experimental Study on the Cannabis Fructus on Exercise Capacity and Cognitive Function in Vascular Dementia Rat Model (마자인(麻子仁)이 치매병태모델의 운동과 인지기능에 미치는 실험적 연구)

  • Bae, Kil-Joon;Song, Min-Yeong;Choi, Jin-Bong;Kim, Seon-Jong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Objectives The aim of this study was to investigate the effects of Cannabis Fructus on exercise capacity and cognitive function in chronic hypoperfusion induced vascular dementia rat model. Methods Vascular dementia rat models were induced by chronic cerebral hypoperfusion through bilateral common carotid arteries occlusion (BCCAO). All rats were randomly divided into 4 groups: normal group; control group; CF I group (feeding Cannabis Fructus 100 mg/kg); CF II group (feeding Cannabis Fructus 300 mg/kg). In order to study the effects of oral administration of Cannabis Fructus on vascular dementia rat models, corner turn test, hole board test, radial arm maze test, passive avoidance test were taken and Acetylcholine (ACh) activity, Acetylcholinesterase (AChE) activity, serum of Vascular endothelial growth factor (VEGF) protein level were measured. Also histological findings of the liver, kidney, brain and the change of Tau immunoreactive neurons in hippocampus were observed. Results CF I and CF II showed significant improvement in corner turn test, hole board test, radial arm maze test, passive avoidance test, Acetylcholine (ACh) activity, Acetylcholinesterase (AChE) activity, the serum of Vascular endothelial growth factor (VEGF) protein level and the change of Tau immunoreactive neurons in hippocampus. CF I showed more significant effect than CF II in these tests. However in histological observations of the liver and kidney both CF I and CF II showed glomerular injury and hepatotoxicity. Conclusions These results suggest that Cannabis Fructus was helpful in improving exercise capacity and cognitive function on Chronic hypoperfusion induced Vascular Dementia rats. However Cannabis Fructus affects the liver and kidney, therefore suggest that this is an area for further study.

Recombinant Goat VEGF164 Increases Hair Growth by Painting Process on the Skin of Shaved Mouse

  • Bao, Wenlei;Yin, Jianxin;Liang, Yan;Guo, Zhixin;Wang, Yanfeng;Liu, Dongjun;Wang, Xiao;Wang, Zhigang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1355-1359
    • /
    • 2014
  • To detect goat vascular endothelial growth factor (VEGF)-mediated regrowth of hair, full-length VEGF164 cDNA was cloned from Inner Mongolia cashmere goat (Capra hircus) into the pET-his prokaryotic expression vector, and the recombinant plasmid was transferred into E. coli BL21 cells. The expression of recombinant $6{\times}his-gVEGF164$ protein was induced by 0.5 mM isopropyl thio-${\beta}$-D-galactoside at $32^{\circ}C$. Recombinant goat VEGF164 (rgVEGF164) was purified and identified by western blot using monoclonal anti-his and anti-VEGF antibodies. The rgVEGF164 was smeared onto the dorsal area of a shaved mouse, and we noted that hair regrowth in this area was faster than in the control group. Thus, rgVEGF164 increases hair growth in mice.