• Title/Summary/Keyword: varying thickness

Search Result 763, Processing Time 0.028 seconds

Relationship Between the Resonance Frequency and QTS for Microspeaker (마이크로스피커에서 공명진동수와 QTS 사이의 연관성)

  • Oh, Sei-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.403-409
    • /
    • 2011
  • Micro speakers are used to reproduce sound in small electric and information and communications devices, such as cellular phones, PMPs, and MP3 players. The acoustical properties and sound quality, which are changed due to the decreased size of the speaker, are often adjusted varying the type and thickness of the diaphragm. The most widely used diaphragm material is thin polymer. It was previously reported by the author of this paper that the resonance frequency of a micro speaker is changed by the type and thickness of a polymer diaphragm. In this paper, the frequency response near the resonance frequency of a micro speaker was studied as functions of the type and thickness of the polymer diaphragm. While $R_{max}$ and $R_{DC}$ were affected by the type and thickness, an analysis of the electrical impedance curve revealed that $R_o(= R_{max}/R_{DC})$ and ${\Delta}f$ were not changed. Thus, $Q_{TS}$ which was function of $R_o$, ${\Delta}f$, and the resonance frequency, is only related to the resonance frequency. The increase of the resonance frequency led to a proportional rise of $Q_{TS}$. The change of the frequency response near the resonance frequency was not dependent on the type or thickness of the polymer diaphragm, but was affected by the resonance frequency.

Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module (고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.

Evaluation of Leak Rate Through a Crack with Linearly-Varying Sectional Area (선형적으로 변하는 단면적을 가진 균열에서의 누설률 평가)

  • Park, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.821-826
    • /
    • 2016
  • The leak before break (LBB) concept is used in pipe line design for nuclear power plants. For application of the LBB concept, leak rates through cracks should be evaluated accurately. Usually leak late analyses are performed for through-thickness cracks with constant cross-sectional area. However, the cross-sectional area at the inner pipe surface of a crack can be different from that at the outer surface. In this paper, leak rate analyses are performed for the cracks with linearly-varying cross-sectional areas. The effect of varying the cross-sectional area on leak rates was examined. Leak rates were also evaluated for cracks in bi-material pipes. Finally, the effects of crack surface morphology parameters on leak rates were examined.

Comparison of anterior maxillary and mandibular alveolar parameters in African American and Caucasian women: A retrospective pilot study

  • Renaud, Lauren;Gandhi, Vaibhav;West, Cailynn;Gudhimella, Sudha;Janakiraman, Nandakumar
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.175-185
    • /
    • 2021
  • Purpose: The primary objective of this study was to analyze the thickness and height of alveolar bone around the maxillary and mandibular incisors. Additionally, this study aimed to compare bone parameters between Caucasian (CC) and African American (AA) female patients. Materials and Methods: In this retrospective pilot study, 50 female subjects(25 CC and 25 AA) were included. The inclusion criteria were AA or CC women between the ages of 18 and 50 with a normo-divergent facial pattern and Angle's class I, end-on class II, or mild class III malocclusion. The distance from the cementoenamel junction (CEJ) to the buccal and lingual alveolar crest; the alveolar ridge thickness at the mid-root and apex; and the buccal and lingual bone thickness at 3, 6, and 9mm from the CEJ were measured. Results: No significant difference was found (P>0.05) in the cortical bone thickness at 3mm, 6mm, or 9mm from the alveolar crest between CC and AA populations for most measurements. A significant difference in bone thickness was found (P<0.05) for the lingual surface of the central incisor, with maxillary bone thickness found to be higher than mandibular bone thickness. The measurements of lingual thickness were larger than those of buccal thickness for both races. Conclusion: There were no differences in maxillomandibular anterior alveolar bone measurements between normo-divergent adult AA and CC women, except for a few parameters at varying locations. However, future studies can be planned based the current pilot study data, which may provide valuable information.

Study on Correlation Between the Internal Pressure Distribution of Slit Nozzle and Thickness Uniformity of Slit-coated Thin Films (슬릿 노즐 내부 압력 분포와 코팅 박막 두께 균일도 간의 상관관계 연구)

  • Gieun Kim;Jeongpil Na;Mose Jung;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 2023
  • With an attempt to investigate the correlation between the internal pressure distribution of slit nozzle and the thickness uniformity of slot-coated thin films, we have performed computational fluid dynamics (CFD) simulations of slit nozzles and slot coating of high-viscosity (4,800 cPs) polydimethylsiloxane (PDMS) using a gantry slot-die coater. We have calculated the coefficient of variation (CV) to quantify the pressure and velocity distributions inside the slit nozzle and the thickness non-uniformity of slot-coated PDMS films. The pressure distribution inside the cavity and the velocity distribution at the outlet are analyzed by varying the shim thickness and flow rate. We have shown that the cavity pressure uniformity and film thickness uniformity are enhanced by reducing the shim thickness. It is addressed that the CV value of the cavity pressure that can ensure the thickness non-uniformity of less than 5% is equal to and less than 1%, which is achievable with the shim thickness of 150 ㎛. It is also found that as the flow rate increases, the average cavity pressure is increased with the CV value of the pressure unchanged and the maximum coating speed is increased. As the shim thickness is reduced, however, the maximum coating speed and flow rate decrease. The highly uniform PDMS films shows the tensile strain as high as 180%, which can be used as a stretchable substrate.

  • PDF

Effect of Varying Levels of Aflatoxin, Ochratoxin and Their Combinations on the Performance and Egg Quality Characteristics in Laying Hens

  • Verma, J.;Johri, T.S.;Swain, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1015-1019
    • /
    • 2003
  • A 50 day feeding trial was conducted with White Leghorn (WL) laying hens, 42 weeks old, to determine if feeding of varying levels of aflatoxin (AF), ochratoxin A (OA) or their combinations has any effect on their performance and egg quality parameters. Feeding of $T_4$, $T_7$, $T_8$, $T_9$ and $T_10$ caused significant reduction in feed intake of hens. Hen day egg productions were significantly reduced at all the levels of toxins except 0.5 ppm of AF. Maximum reduction in egg production was noticed at 2 and 4 ppm of AF and OA, respectively. Average body weight and egg weight were not affected by toxin feeding. The feed efficiency in terms of net feed efficiency and feed consumed per dozen egg produced was significantly reduced at higher levels of both the toxins and their combinations. Feed consumption for production of 1 kg egg mass remained uninfluenced due to aflatoxin feeding whereas significant increase in the value of the same was noticed at 4 ppm level of OA and combination of 1 and 2 ppm of AF and 2 and 4 ppm of OA ($T_9$ and $T_10$), respectively. Various levels of OA (1-4 ppm) and all the combination of two toxins ($T_8$, $T_9$ and $T_10$) significantly altered the shape index of eggs in laying hens. The shell thickness was significantly reduced by higher level of AF (2 ppm), OA (2 and 4 ppm) and their combination. Albumen index, Haugh Unit and yolk index remained unchanged due to incorporation of toxins in the diet. It is concluded that AF, OA either singly or in combination at higher levels could depress the performance in terms of egg production and feed efficiency significantly. The egg quality parameters i.e. shape index and shell thickness were also significantly affected.

Microstructure and Exchange Coupling in Synthetic Ferrimagnetic Permalloy/ Ru (V)/Permalloy Films (루테늄과 바나듐을 중간층으로 삽입한 인위적페리층의 교환작용과 미세구조)

  • Jung, Young-Soon;Song, Oh-Sung;Yoon, Chong-Seung
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.211-215
    • /
    • 2003
  • We fabricated the synthetic ferrimagnetic layers (SyFL) of permalloy/X (X=Ru, V)/permalloy by varying the X thickness, and investigated the changes of coercivity (H$\sub$c/), spin flopping field (H$\sub$sf/), and saturation magnetization field (H$\sub$s/) with a superconducting quantum interference device (SQUID). We also observed the microstructure with a cross sectional transmission electron microscope (TEM). Permalloy SyFL had less than 10 Oe coercivity, and H$\sub$sf/ and H$\sub$s/ could be tuned by varying ruthenium and vanadium layer thickness. The comparatively small exchange coupling in permalloy-V SyFL was caused by the intermixing of permalloy and vanadium decreasing the effective exchange coupling thickness.

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition (Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가)

  • Im, Jinsol;Ahn, Jinhyeok;Kim, Jungmin;Sung, Shi-Joon;Cho, Kuk Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.60-68
    • /
    • 2019
  • High-voltage operation of the lithium ion battery is one of the advantageous approaches to obtain high energy capacity without changing the conventional cell components and structure. However, operating at harsh condition inevitably results in severe side reactions at the electrode surface and structural disintegration of active material particles. Herein we coated layers composed of $Al_2O_3$ and ZnO on the electrode based on NCM using atomic layer deposition (ALD). Thicker layers of novel Al-doped ZnO (AZO) coating compared to conventional ALD coated layers are prepared. Cathode based on NCM with the varying AZO coating thickness are fabricated and used for coin cell assembly. Effect of ALD coating thickness on the charge-discharge cycle behavior obtained at high-voltage operation was investigated.

The Effect of Thickness on Flexible, Electrical and Optical properties of Ti- ZnO films on Flexible Glass by Atomic Layer Deposition

  • Lee, U-Jae;Yun, Eun-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.196.1-196.1
    • /
    • 2016
  • TCO(Transparent Conducting Oxide) on flat glass is used in thin-film photovoltaic cell, flat-panel display. Nowadays, Corning(R) Willow Glass(R), known as flexible substrate, has attracted much attention due to its many advantages such as reliable roll-to-roll glass processing, high-quality flexible electronic devices, high temperature process. Also, it can be an alternative to flexible polymer substrates which have their poor stability and degradation of electrical and optical qualities. For application on willow glass, the flexibility, electrical, optical properties can be greatly influenced by the TCO thin film thickness due to the inherent characterization of thin film in nanoscale. It can be expected that while thick TCO layer causes poor transparency, its sheet resistance become low. Also, rarely reports were focusing on the influence of flexible properties by varying TCO thickness on flexible glass. Therefore, it is very important to optimize TCO thickness on flexible Willow glass. In this study, Ti-ZnO thin films, with different thickness varied from 0 nm to 50 nm, were deposited on the flexible willow glass by atomic layer deposition (ALD). The flexible, electrical and optical properties were investigated, respectively. Also, these properties of Ti-doped ZnO thin films were compared with un-doped ZnO thin film. Based on the results, when Ti-ZnO thin films thickness increased, resistivity decreased and then saturated; transmittance decreased. The Figure of Merit (FoM) and flexibility was the highest when Ti-ZnO thickness was 40nm. The flexible, electrical and optical properties of Ti-ZnO thin films were better than ZnO thin film at the same thickness.

  • PDF