• Title/Summary/Keyword: varying thickness

Search Result 763, Processing Time 0.029 seconds

Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory

  • Hadi, Amin;Nejad, Mohammad Zamani;Rastgoo, Abbas;Hosseini, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.663-672
    • /
    • 2018
  • This paper contains a consistent couple-stress theory to capture size effects in Euler-Bernoulli nano-beams made of three-directional functionally graded materials (TDFGMs). These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in all three axial, thickness and width directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of minimum potential energy. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of TDFG nano-beam. At the end, some numerical results are performed to investigate some effective parameter on buckling load. In this theory the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor.

Frequency response of Photovoltaic Cell using ZnPc (ZnPc를 이용한 유기태양전지의 주파수 응답 특성)

  • Ahn, Joon-Ho;Kim, Ho-Sik;Park, Jae-Joon;Lee, Won-Jae;Jang, Kyung-Uk;Seo, Dae-Sik;Kim, Tae-Wan;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.285-286
    • /
    • 2005
  • Organic photovoltaic properties were studied in ZnPc/$C_{60}$ heterojunction structure by varying the organic layer thicknesses and exiton blocking layer(EBL). Current density-voltage characteristics of organic photovoltaic cells were measured using Keithley 236 source-measure unit, a 500W xenon lamp (ORIEL 66021) for a light source and Agilent 4294A impedance analyzer in the range of 40 Hz $\sim$ 1 MHz. From the analyses of current-voltage characteristics such as short-circuit current density, open-circuit voltage and power conversion efficiency, optimum thickness of the organic layer were obtained and frequency response such as electrical conductance.

  • PDF

The Characteristic of PZT/BT Heterolayered films (PZT/BT 이종박막의 특성)

  • Lee, Sang-Heon;Nam, Sung-Pill;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.260-261
    • /
    • 2005
  • The heterolayered thick/thin structure consisting of $Pb(Zr_{0.52}Ti_{0.48})O_3$ and $BaTiO_3(BT)$ were fabricated by a sol-gel process. PZT powders, prepared by the sol-gel method, were mixed with an organic vehicle and the PZT thick films were fabricated by the screen printing techniques on alumina substrate with Pt electrodes. The microstructural and dielectric characteristics of the stacked heterolayered PZT/BT/PZT films were investigated by varying the number of coating $BaTiO_3$ layers. The existence of a $BaTiO_3$ layer between the PZT thick films of the tri-layer $Pb(Zr_xTi_{1-x})O_3/BaTiO_3/Pb(Zr_xTi_{1-x})O_3$thick/thin/thick film can greatly improve the leakage current properties of the PZT thick films. The average thickness of a PZT(5248)/$BaTiO_3$ heterolayered thick/thin film was 25$\mu$m. The relative dielectric constant and dielectric loss of the PZT(5248)/$BaTiO_3$-3 heterolayered thin film coated three times were 1087 and 1.00% at 1[MHz].

  • PDF

Development of Simple Prediction Model for Fillet Welding Deformation (필릿 용접변형에 대한 간이 예측 모델 개발)

  • 김상일
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • The welding deformation of a hull structure in the shipbuilding industry is Inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurateprediction method which can explicitly account for the influence of various factors on the welding deformation. The validity of the prediction method must be also clarified through experiments. This paper is aimed at deriving the simple prediction model for fillet welding deformations. For this purpose, the thermal elasto-plastic analysis varying the welding conditions and plate thickness has been performed. On the basis of numerical results, the formulae for angular distortion and transverse shrinkage have been derived through the regression analysis. Experimental work has been also carried out to clarify the validity of numerical results. It has been found that the numerical results show a good agreement with those of experiments

Stability analysis of a three-layer film casting process

  • Lee, Joo-Sung;Shin, Dong-Myeong;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • The co-extrusion of multi-layer films has been studied with the focus on its process stability. As in the single-layer film casting process, the productivity of the industrially important multi-layer film casting and the quality of thus produced films have often been hampered by various instabilities occurring in the process including draw resonance, a supercritical Hopfbifurcation instability, frequently encountered when the draw ratio is raised beyond a certain critical value. In this study, this draw resonance instability along with the neck-in of the film width has been investigated for a three-layer film casting using a varying width non-isothermal 1-D model of the system with Phan-Thien and Tanner (PTT) constitutive equation known for its robustness in portraying extensional deformation processes. The effects of various process conditions, e.g., the aspect ratio, the thickness ratio of the individual film layers, and cooling of the process, on the stability have been examined through the nonlinear stability analysis.

The Effect of Alkali Treatment on the Hand of Polyester Fabrics (폴리에스테르 직물의 알칼리 감량가공에 따른 촉감의 변화)

  • 신혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.783-791
    • /
    • 1996
  • The effect of alkali treatment on the changes in characteristics, mechanical properties, and hand of polyester fabrics was studied. Two kinds of fabrics having different yarn deniers were treated varying weight loss. The results were as follows; 1. Changes in constructional characteristics by alkali treatment were: a decrease in weight & thickness of fabric, a decrease in yarn denier, a decrease in apparent density of fabric, an increase in porosity to air, and a change fiber surface. 2. As for the changes in mechanical properties by alkali treatment, findings were : an increase in WT, RT, MIU, LC, and WC, a decrease in LT, B,2HB, G,2HG,2HGS, MMD, SMD, and RC, ana an increase in drape. 3. Changes in hand by alkali treatment were: a decrease in KOSHI and HARE, an increase in FUUURAMI, SHARI, KISHIMI, and SHENAYAUASA, and an increase in T.H.V 4. In the case of the same weight loss, the hand of 40/24 fabric being composed of thinner yarns was better than the hand of 50/24 fabric. 5. When 50/24 fabric was treated to have the same weight with 40/24 fabric, so the yam deniers of two fabrics were the same, the hand of 50/24 fabric having larger weight loss was better than the hand of 40/24 fabric.

  • PDF

The Characteristics of Compound Layers Formed during Plasma Nitrocarburising in Pure Iron (플라즈마 침질탄화처리된 순철의 화합물층 특성)

  • Cho, H.S.;Lee, S.Y.;Bell, T.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.143-150
    • /
    • 2000
  • Ferritic plasma nitrocarburising was performed on pure iron using a modified DC plasma unit. This investigation was carried out with various gas compositions which consisted of nitrogen, hydrogen and carbon monoxide gases, and various gas pressures for 3 hours at $570^{\circ}C$. After treatment, the different cooling rates(slow cooling and fast cooling) were used to investigate its effect on the structure of the compound layer. The ${\varepsilon}$ phase occupied the outer part of the compound layer and ${\gamma}^{\prime}$ phase existed between the ${\varepsilon}$ phase and the diffusion zone. The gas composition of the atmosphere influenced the constitution of the compound layer produced, i.e. high nitrogen contents were essential for the production of ${\varepsilon}$ phase compound layer. It was found that with increasing carbon content in the gas mixture the compound layer thickness increased up to 10%. In the gas pressure around 3 mbar, the compound layer characteristics were slightly effected by gas pressure. However, in the low gas pressure and high gas pressure, the compound layer characteristics were significantly changed. The constitution of the compound layer was altered by varying the cooling rate. A large amount of ${\gamma}^{\prime}$ phase was transformed from the ${\varepsilon}$ phase during slow cooling.

  • PDF

Distribution Analysis of TRISO-Coated Particles in Fully Ceramic Microencapsulated Fuel Composites

  • Lee, Hyeon-Geun;Kim, Daejong;Lee, Seung Jae;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.400-405
    • /
    • 2018
  • FCM nuclear fuel, a concept proposed as an accident tolerant fuel in light water reactors, consists of TRISO fuel particles embedded in a SiC matrix. The uniform dispersion of internal TRISO fuel particles in the FCM fuel is very important for improving the fuel efficiency. In this study, FCM sintered pellets with various volume ratios of TRISO-coated particles were prepared by hot press sintering. The distribution of TRISO-coated particles was quantitatively analyzed using X-ray ${\mu}CT$ and expressed as a dispersion uniformity index. TRISO-coated particles were most uniformly dispersed in the FCM pellets prepared using only overcoated TRISO particles without mixing of additional SiC matrix powder. FCM pellets with uniformly dispersed TRISO particle volume fraction of up to 50% were prepared using overcoated TRISO particles with varying thickness.

Fabrication of Si monolithic inductors using high resistivity substrate (고저항 실리콘 기판을 이용한 마이크로 웨이브 인덕터의 제작)

  • Park, Min;Hyeon, Yeong-Cheol;Kim, Choon-Soo;Yu, Hyun-Kyu;Koo, Jin-Gun;Nam, Kee-Soo;Lee, Seong-Hearn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.291-294
    • /
    • 1996
  • We present the experimental results of high quality factor (Q) inductors fabricated on high-resistivity silicon wafer using standard CMOS process without any modificatons such as thick gold layer or multilayer interconnection. This demonstrates the possibility of building high Q inductors using lower cost technologies, compared with previous results using complicated process. The comparative analysis is carried out to find the optimized inductor shape for the maximum performance by varying the thickness of metal and number of turns with rectangular shape.

  • PDF

Effect of Intercritical Annealing on Microstructure and Mechanical Properties of Fe-9Mn-0.2C-3Al-0.5Si Medium Manganese Steels Containing Cu and Ni (구리와 니켈이 포함된 Fe-9Mn-0.2C-3Al-0.5Si 중망간강의 미세조직과 기계적 특성에 미치는 2상역 어닐링의 영향)

  • Lee, Seung-Wan;Sin, Seung-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C-3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.