• Title/Summary/Keyword: varying thickness

Search Result 763, Processing Time 0.033 seconds

Vibration Analysis of Circular Plate with Continuously Varying Thickness (가변두께를 가지는 원판의 진동해석에 관한 연구)

  • Shin, Young Jae;Jaun, Su Ju;Yun, Jong Hak;Yoo, Yeong Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • paper presents the results of the use of the differential transformation technique in analyzing the free vibration of circular plates.calculations were carried out and were compared with previously published results. The results that were obtained when this method was used coincide with the results of The present analysis shows the usefulness and validity of differential transformation in solving a solid-circular and annular-plate problem in terms of free-vibration responses.

Effects of Size on the Performance of Heat-Recirculating Swiss-roll Combustors (크기에 따른 스위스 롤 형태 연소기의 성능 변화)

  • Oh, Hwa-Young;Kim, Youn-Ho;Huh, Hwan-Il;Ronney, Paul D.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.46-49
    • /
    • 2006
  • Extinction limits and combustion temperatures in heat-recirculating excess enthalpy reactors employing both gas-phase and catalytic reaction have been examined previously, with and emphasis Reynolds number (Re) effects and possible application to microscale combustion devices. However, Re is not the only parameter needed to characterize reactor operation. In particular, the use of a fixed reactor size implies that residence time and Re cannot be adjusted independently. To remedy this situation, in this work geometrically similar reactors of different physical sizes were tested with the aim of independently determining the effects of Re and Da. It is found that the difference between catalytic and non-catalytic combustion limits narrow as scale decreases. Moreover, to assess the importance of wall thermal conductivity, reactors of varying wall thickness were studied. From these results the effect of scale on microscale reactor performance and implications for practical microcombustion devices are discussed.

  • PDF

Analysis of Shearing Characteristics for Vibration Damping Sheet Metals Bonded with Dissimilar Sheet Metals (이종 접합 제진 판재의 전단 가공 특성 분석)

  • Lee, Y.D.;Cha, Y.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.235-238
    • /
    • 2009
  • This study is performed to investigate shearing characteristics for vibration damping sheet metals which are bonded with dissimilar sheet metals. A shearing tool set is designed and manufactured and shearing tests with the tool set are conducted at varying the magnitude of clearance in order to analyze the shearing characteristics. The shearing characteristics are analyzed for burr height and shape of sheared faces with respect to the magnitude of clearance between the punch and the die. The shearing test results demonstrate that optimum clearance is $8{\sim}12%$ of the sheet thickness at the shearing of the vibration damping sheet metals and the shearing direction has to be controlled deriving occurrence of the burr at the thick sheet of the vibration damping sheet metals.

  • PDF

Local buckling behaviour of steel plate elements supported by a plastic foam material

  • Mahendran, M.;Jeevaharan, M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.433-445
    • /
    • 1999
  • Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.

Effective Parameters for the Precise Control of Thin Film Buckling on Elastomeric Substrates

  • Ahn, Seong-Min;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.419-422
    • /
    • 2010
  • This paper reports a simple and versatile technique for generating highly controllable sinusoidal nanostructures on the surface of poly-(dimethylsiloxane) (PDMS). The sinusoidal features were generated by oxidizing PDMS slabs with oxygen plasma, then stretching them by wrapping around a cylinderical surface, and finally allowing them to relax. The wavelength and amplitude could be finely controlled by varying the fabrication conditions such as duration of oxidation, diameter of the glass cylinder, duration of stretching, thickness of the PDMS slabs, and temperature during the second hardening process. The varied trends of the buckling patterns were characterized by using an atomic force microscope.

Strain evolution in Tin Oxide thin films deposited by powder sputtering method

  • Cha, Su-Yeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.283.1-283.1
    • /
    • 2016
  • Tin Oxide(SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. It would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. In addition, SnO2 is commonly used as gas sensors. To fabricate high quality epitaxial SnO2 thin films, a powder sputtering method was used, in contrast to typical sputtering technique with sintered target. Single crystalline sapphire(0001) substrates were used. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using X-ray diffraction, scanning electron microscopy, and atomic force microscopy measurements. We found that the strain evolution of the samples was highly affected by gas environment and growth rate, resulted in the delamination under O2 environment.

  • PDF

A Study on the Estimation of Scattering Coefficient in the Spheres Using an Inverse Analysis (역해석을 이용한 구형 공간 내의 산란계수 추정에 관한 연구)

  • Kim, Woo-Seung;Kwag, Dong-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.364-373
    • /
    • 1999
  • A combination of conjugate gradient and Levenberg-Marquardt method is used to estimate the spatially varying scattering coefficient, ${\sigma}(r)$, in the solid and hollow spheres by utilizing the measured transmitted beams from the solution of an inverse analysis. The direct radiation problem associated with the inverse problem is solved by using the $S_{12}-approximation$ of the discrete ordinates method. The accuracy of the computations increased when the results from the conjugate gradient method are used as an initial guess for the Levenberg-Marquardt method of minimization. Optical thickness up to ${\tau}_0=3$ is used for the computations. Three different values of standard deviation are considered to examine the accuracy of the solution from the inverse analysis.

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • Baek, Eun-Ha;Kim, So-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF

The Analysis of Optimum Design Parameters for a Flat-Plate solar Collector Through Computer Simulation (컴퓨터 시물레이션 에 의한 太陽熱 集熱器 의 最適設計 에 관한 硏究)

  • 조수원;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1984
  • In the utilization of solar energy most often a flat solar collector is used for solar heating, system. Since solar energy is absorbed through this solar collector, it is considered to be a most important part in the whole solar heating system. The purpose of the present investigation is to evaluate the influence of varying design parameters for thermal performances of flat-plate solar collector. By analysing these parameters, optimum design of solar collector would become possible. Specification of the existing solar collector are utilized in calculation as a starting point. Analysis is carried out numerically for "Unit Solar Collector" which is composed of fin and tube. Among design parameters. such parameters as mass flow rate per unit area, tube spacing and fin thickness are selected as variables in the computer simulation model. Results are presented for thermal performances of flat-plate solar collector for each important design parameters, so that predictions become possible through numerical analysis without performing experiments whenever it is required. required.

Shape Optimal Design of Variable Sandwich Structure (가변 샌드위치 구조물의 형상최적설계)

  • 박철민;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2162-2171
    • /
    • 1993
  • Geneal Structure optimization is utilized to minimize the weight of structures while satisfying constraints imposed on stress, displacements and natural frequencies, etc. Sandwich structures consist of inside core and outside face sheets. The selected sandwich structures are isotropic sandwich beams and isotropic sandwich plate. The face sheets are treated as membrane and assumed to carry only tensions, while the core is assumed to carry only transverse shear. The characteristic of the varying area are considered by adding the projected component of the tension to the transverse shear. The bending theory and energy method are adopted for analyzing sandwich beams and plates, respectively. In the optimization process, the cost function is the weight of a structure, and a deflection and stress constraints are considered. Design variable are thickness and tapering coefficients which determine the shape of a structure. An existing optimization code is used for solving the formulated problems.