• Title/Summary/Keyword: varying thickness

Search Result 763, Processing Time 0.03 seconds

Photovoltaic Effects in CuPc/C60 and ZnPc/C60 Depending on the Organic Layer Thickness

  • Ahn, Joon-Ho;Lee, Joon-Ung;Lee, Won-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.115-118
    • /
    • 2005
  • Organic photovoltaic properties were studied in $CuPc/C_{60}$ and $ZnPc/C_{60}$ heterojunction structure by varying the organic layer thicknesses. Current density-voltage characteristics of organic photovoltaic cells were measured using Keithley 236 source-measure unit and a 500 W xenon lamp (ORIEL 66021) for a light source. From the analyses of current-voltage characteristics such as short-circuit current density, open-circuit voltage and power conversion efficiency, optimum thickness of the organic layer were obtained.

A Study on the Fundamental Characteristics of Self-healing Metalized Polypropylene Films (금속증착 Polypropylene Film의 Self-healing 기초특성 연구)

  • Choi, Ki-Suck;Ryu, Sung-Sic;Jung, Jong-Wook;Park, Ha-Yong;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2389-2391
    • /
    • 1999
  • This paper describes the self-healing characteristics which plays an important role in high voltage capacitors. In this experiment, artificial voids were simulated in MPPFs, and the self-healing voltages were measured by varying the diameter of the voids and the thickness of the MPPFs. As a result, the self-healing voltage and the burn-out area were increased with the increment in the void diameter and the thickness of MPPF.

  • PDF

A Simple Finite Element Analysis of Axisymmetrical Shell Structures (축대칭 쉘 구조의 단순 유한요소 해석)

  • 김용희;이윤성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.68-77
    • /
    • 2003
  • Shell structure are widely used in a variety of engineering application and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winker foundation, variable thickness and other problem. In this paper, a simple finite element method is presented for the analysis of axisymmetric several types of shell structure subjected to axisymmetric loads and having uniform and varying wall thickness on elastic foundation. The method is based on the analogy with a beam on elastic foundation (BEF), foundation stiffness matrix where the foundation modulus and beam flexural rigidity are replaced by appropriate parameters pertaining to the shell under considerations. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with SAP2000.

Scaling and Dynamic Effects on the Plate Cutting Response (판의 찢김 응답에 대한 치수 및 동적 효과)

  • 백점기;이탁기
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.48-55
    • /
    • 1996
  • The aim of the present study is to investigate the scaling and dynamic erects on the plate cutting response. A series of cutting tests for unstiffened and longitudinally stiffened steel plate specimens in a quasi-static condition were carried out, varying the plate thickness. Based on the previous as well as the present test results, the scaling effect of Plate thickness on the cutting response is investigated. Dynamic erects are also clarified from the devious theoretical and experimental results. The Cowper-Symonds constitutive equation originally derived for mild steel is modified to consider the influence of strain-rate sensitivity on yield strength of high tensile steel.

  • PDF

Observations of Exchange Coupling in Nd2Fe14B/Fe/Nd2Fe14B Sandwich Structures and Their Magnetic Properties

  • Yang, Choong-Jin;Kim, Sang-Won
    • Journal of Magnetics
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 1999
  • Sandwich structures of$ Nd_2Fe_{14}B/Fe/Nd_2Fe_{14}B $magnetic films have been grown by a KrF excimer laser (λ=248 nm) ablation technique. Magnetic properties were characterized by varying the thickness of hard ($Nd_2Fe_{14}B$) and soft (Fe) magnetic films and the volume fraction as well. In the (x)nm[NdFeB]/(y)nm[Fe]/(x)nm[NdFeB]/(100) Si structure the thickness (x) was varied from 3.6 to 54 nm, and (y) from 15 to 112 nm. At (y) = 15~20 nm where the volume fraction of Fe corresponded to 61~75%, the sandwich structure exhibited an enhanced Mr/Ms and iHc as well from the result of the exchange coupling between the magnetic layers. Experimentally calculated exchange constant$ (A_s) of A_s = 2.5{\times}10^{-10} J/m$ was estimated using the intrinsic coercivity (iHc) of 1.2 kOe at 5 K for the sandwich magnetic trilayers.

  • PDF

A study for the residual strain of aluminum thin film for MEMS structures (MEMS용 구조물을 위한 알루미늄 박막의 잔류응력에 대한 연구)

  • Kim, Youn-Jin;Shin, Jong-Woo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2521-2523
    • /
    • 1998
  • Freestanding flexible microstructures fabricated from deposited thin films become mechanically unstable when internal stresses exceed critical values. The residual stress and stress gradient of aluminum thin film were examined to make sure of fabricating the reproduceable aluminium structure. For good shape of micro mirror array and microstructures, the experiment was done varying thickness and deposition rate. As the aluminium film thickness increased from 0.8${\mu}m$ to 1.6${\mu}m$, the stress gradient decreased from 11.62MPa/${\mu}m$ to 2.62MPa/${\mu}m$. The residual stress values are from 42.4MPa to 62.24MPa of tensile stresses.

  • PDF

Characteristics of Pd doped $SnO_2$ gas sensitive thin films (Pd이 도핑된 $SnO_2$ 박막 가스감지막의 특성)

  • Kim, Jin-Hae;Kim, Dae-Hyun;Lee, Yong-Sung;Kim, Jeong-Gyoo;Jeon, Choon-Bae;Park, Hyo-Derk;Park, Ki-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1779-1781
    • /
    • 2000
  • Pd doped $SnO_2$ thin film sensors were prepared on alumina substrate by rf magnetron sputtering method. The sensitivity of thin film was investigated by varying the heat-treatment temperature, film thickness and gas species. The thin film heat-treated at 600$^{\circ}C$ and film thickness of 5000${\AA}$ showed the highest sensitivity at an operating temperature of 400$^{\circ}C$.

  • PDF

Influence of the porosities on the free vibration of FGM beams

  • Hadji, L.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.273-287
    • /
    • 2015
  • In this paper, a free vibration analysis of functionally graded beam made of porous material is presented. The material properties are supposed to vary along the thickness direction of the beam according to the rule of mixture, which is modified to approximate the material properties with the porosity phases. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

On the material properties of shell plate formed by line heating

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.66-76
    • /
    • 2017
  • This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

The Distance-Dependent Fluorescence Enhancement Phenomena in Uniform Size Ag@SiO2@SiO2(dye) Nanocomposites

  • Arifin, Eric;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.539-544
    • /
    • 2013
  • $Ag@SiO_2@SiO_2$(FITC) nanocomposites were prepared by the simple polyol process and St$\ddot{o}$ber method. Fluorescence enhancement of fluorescein moiety (fluorescein isothiocyanate, FITC) was investigated in the presence of silver nanoparticles in $Ag@SiO_2@SiO_2$(FITC) system with varying thickness (X nm) of first silica shell. Maximum enhancement factor of 4.3 fold was achieved in $Ag@SiO_2@SiO_2$(FITC) structure with the first silica shell thickness of 8 nm and the average separation distance of 11 nm between the surface of silver nanoparticle and fluorescein moiety. The enhancement is believed to be originated from increased excitation rate of fluorescein moiety due to concentrated local electromagnetic field which was improved by interaction of light with silver nanoparticles.