• 제목/요약/키워드: various loadings

검색결과 326건 처리시간 0.02초

다축경편 복합재료 평판의 기계적 체결시 기하학적 형상 및 하중조건에 다른 응력해석 (Stress Analysis of Mechanically Fastened Joints in MWK Composite Laminate with Different Geometric :Factors and Loading Conditions)

  • 최재민;조민규;전흥채;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.246-249
    • /
    • 2004
  • When MWK (Multiaxial Warp Knitted Fabric) composites are applied for the structures, the connections of each component using mechanical fastening is needed. The local contact between the bolted joint and the composite laminates may induce high stress concentration or breakdown in the laminates for the mechanical joints. There for, it is strongly required to study the characteristics of mechanically joints of MWK composite laminates. In this study, stress analysis near the hole boundary of MWK composite laminate is conducted with various geometric factors under different loadings. In the case of multi-pin loaded MWK composite laminates, the results show that the types of loadings and geometric factors of mechanical joints have a significant influence on the joint performances.

  • PDF

Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution

  • Yazdani, Raziye;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.499-511
    • /
    • 2019
  • In this paper, wave propagation of double-bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and carbon nanotube reinforced composite (CNTRC) face sheets are investigated subjected to multi-physical loadings with temperature dependent material properties. The governing equations of motion are derived by Hamilton's principle. Then, the influences of various parameters such as wave number, CNT volume fraction, temperature change, Skempton coefficient, material length scale parameter, porosity coefficient on the phase velocity of double-bonded micro sandwich shell are taken into account. It is seen that by increasing of Skempton coefficient, the phase velocity decreases for higher wave number and the results become approximately the constant. Also, by increasing of the material length scale parameter, the cut of frequency increases, because the stiffness of micro structure increases. The obtained results for this article can be used to detect, locate and quantify crack.

The Equilibrium Model of MoO$_3$ Containing Phases Supported in Silica

  • Lee, Do-Hyun;Ha, Jin-Wook
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 춘계학술대회 발표논문집
    • /
    • pp.287-289
    • /
    • 2001
  • The morphology of silica supported MoO$_3$ catalysts, which was prepared by impregnation of ammonium heptamolybdate with various weight loadings up to 35 wt%, was studied using x-ray diffraction. In addition to the orthorhombic phase, the behavior of the rarely studied hexagonal phase was characterized. For high loading catalysts, excess ammonium ions present in the monoclinic and triclinic precursors are capable of occupying interstitial sites of microcrystalline MoO$_3$ during moderate temperature calcinations and in doing so enhance the MoO$_3$-SiO$_2$ interaction. This results in a "well dispersed" morphology at high loadings. Sintering at high temperature is due to loss of ammonium from the oxide framework. Ammonia reimpregnation, which leads back to the well dispersed hexagonal phase, may offer a simple regeneration process for spent Mo containing catalysts.

온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석 (Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress)

  • 문형일;김헌영;최철우;정갑식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.288-292
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behaviour of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

Response evaluation of historical crooked minaret under wind and earthquake loadings

  • Ural, Ali;Dogangun, Adem;Meraki, Sakir
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.345-359
    • /
    • 2013
  • Turkey has been hosted various civilizations throughout centuries and it has become one of the oldest settlements all over the world due to the geographical location. Therefore, it has accommodated innumerable historical structures remain from the past civilizations. Protection and conservation of these historical constructions should be the major points for continuity of history. Crooked minaret is one of between these historical invaluable structures. It is located at the city of Aksaray and it dates back approximately 800 years. The minaret has lost its vertical position in time and bends on the North-West direction. In this study, general information is given about minarets and some restoration recommendations are given for crooked minaret based on performed some finite element structural analyses. These analyses are considered into three cases; 1-Dead loading, 2-Wind loading, and 3-Earthquake loadings. Results from the analyses are discussed detailed and some useful recommendations are given in the end of the study.

Biomechanical model of pushing and pulling

  • Lee, K.S.
    • 대한인간공학회지
    • /
    • 제1권2호
    • /
    • pp.3-9
    • /
    • 1982
  • This study demonstrates that certain personal and task factors can be modelled to predict slip potential as well as back loadings durings dynamic pushing and pulling tasks. Such tasks are com- mon to many manual material handling jobs in industry and the results of this work will hopefully be of use in improved job design. The objective of this research is to formulate and validate a dynamic biomechanical model of pushing and pulling a cart. For pushing and pulling tasks, the model can : (1) estimate foot forces for given hand forces, and (2) estimate tors muscle and vertabral column loadings. In order to formulate and validate the model, experiments involving pushing and pulling of a cart were performed. These experiments produced data of the following type : (1) dynamic forces on the feet, (2) hand forces required to move the cart, (3) body motions as functions of various cart motion and (4) back muscle actions. The model was validated using three different methods; precision was tested using correlation between predicted and measured results, accuracy using standard error between of predicted and measured results, and intuitive comparison of predicted results using sensitivity analyses.

  • PDF

용접부 3차원 표면균열선단에서의 구속상태 (The 3D Surface Crack-Front Constraints in Welded Joins)

  • 이형일;서현
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

Analysis of stiffened Al/SiC FGM plates with cutout under uniaxial and localized in-plane edge loadings

  • P. Balaraman;V.M. Sreehari
    • Structural Engineering and Mechanics
    • /
    • 제89권6호
    • /
    • pp.601-615
    • /
    • 2024
  • Effect of ring and straight stiffeners in the buckling as well as vibration characteristics of metal-ceramic functionally graded plates with cutout subjected to various uniaxial and localized in-plane compressive edge loadings was explored in the present work. In the current work, the distinguishing characteristics of metal and ceramic are merged in a single volume, and power law was used for estimating the material composition throughout thickness. Buckling and free vibration characteristics were studied initially for unstiffened Al/SiC functionally graded plates with cutout. Subsequently, the influence of cutout ratio on buckling load as well as natural frequency for different power law indices was discussed. The functionally graded plate was stiffened by three different stiffener patterns, namely; ring stiffener, straight stiffener, as well as a combination of the ring and the straight stiffener, to enhance the buckling as well as vibration characteristics. The effect of stiffener depth ratio for different stiffener patterns was also presented for functionally graded plates having different cutout sizes under various loading conditions. Such studies on functionally graded material have potential applications in a variety of technological fields including the aerospace and defense sectors.

유한영역에서 안전을 위한 여러 형태의 균열 해석용 적분방정식 적용연구 (An Integral Equation of Various Cracks for Safety in Finite Plane Bodies)

  • 서욱환
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.10-18
    • /
    • 1999
  • An integral equation representation of cracks was presented, which differs from well-known "dislocation layer" representation. In this new representation, the integral equation representation of cracks was developed and coupled to the direct boundary-element method for treatment of cracks in finite plane bodies. The method was developed for in-plane(mode I and II) loadings only. In this paper, the method is formulated and applied to various crack problems involving multiple and branch cracks in finite region. The results are compared to exact solutions where available and the method is shown to be very accurate despite of its simplicity.implicity.

  • PDF