• Title/Summary/Keyword: various beam model

Search Result 505, Processing Time 0.028 seconds

Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints

  • Nogueiro, Pedro;da Silva, Luis Simoes;Bento, Rita;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.39-58
    • /
    • 2009
  • Composite joints, considering the composite action of steel and concrete, exhibit, in general, high strength and high ductility. As a consequence, the use of this type of joint has been increasing in many countries, especially in those that are located in earthquake-prone regions. In this paper, a hysteretic model with pinching is presented that is able to reproduce the cyclic response of steel and composite joints. Secondly, the computer implementation and adaptation of the model in a spring element within the computer code Seismosoft is described. The model is subsequently calibrated using a series of experimental test results for composite joints subjected to cyclic loading. Finally, typical parameters for the various joint configurations are proposed.

Mixed finite element model for laminated composite beams

  • Desai, Y.M.;Ramtekkar, G.S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.261-276
    • /
    • 2002
  • A novel, 6-node, two-dimensional mixed finite element (FE) model has been developed to analyze laminated composite beams by using the minimum potential energy principle. The model has been formulated by considering four degrees of freedom (two displacement components u, w and two transverse stress components ${\sigma}_z$, $\tau_{xz}$) per node. The transverse stress components have been invoked as nodal degrees of freedom by using the fundamental elasticity equations. Thus, the present mixed finite element model not only ensures the continuity of transverse stress and displacement fields through the thickness of the laminated beams but also maintains the fundamental elasticity relationship between the components of stress, strain and displacement fields throughout the elastic continuum. This is an important feature of the present formulation, which has not been observed in various mixed formulations available in the literature. Results obtained from the model have been shown to be in excellent agreement with the elasticity solutions for thin as well as thick laminated composite beams. A few results for a cross-ply beam under fixed support conditions are also presented.

Structural damage localization using spatial wavelet packet signature

  • Chang, C.C.;Sun, Z.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.29-46
    • /
    • 2005
  • In this study, a wavelet packet based method is proposed for identifying damage occurrence and damage location for beam-like structures. This method assumes that the displacement or the acceleration response time histories at various locations along a beam-like structure both before and after damage are available for damage assessment. These responses are processed through a proper level of wavelet packet decomposition. The wavelet packet signature (WPS) that consists of wavelet packet component signal energies is calculated. The change of the WPS curvature between the baseline state and the current state is then used to identify the locations of possible damage in the structure. Two numerical studies, one on a 15-storey shear-beam building frame and another on a simply-supported steel beam, and an experimental study on a simply-supported reinforced concrete beam are performed to validate the proposed method. Results show the WPS curvature change can be used to locate both single and sparsely-distributed multiple damages that exist in the structure. Also the accuracy of assessment does not seem to be affected by the presence of 20-15dB measurement noise. One advantage of the proposed method is that it does not require any mathematical model for the structure being monitored and hence can potentially be used for practical application.

Characteristic Evaluation of Vacuum Chamber for EBM System (전자빔 가공시스템용 진공환경의 성능평가)

  • Kang J.H.;Lee C.H.;Choi J.H.;Lim Y.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.934-937
    • /
    • 2005
  • It is not efficient and scarcely out of the question to use commercial expensive electron beam lithography system widely used for semiconductor fabrication process for the manufacturing application field of various devices in the small business scope. Then scanning electron microscope based electron beam machining system is maybe regarded as a powerful model can be used for it simply. To get a complete suite of thus proper system, proper chamber with high vacuum condition is necessarily required more than anything else to modify scanning electron microscope. In this study, special chamber unit using rotary pump and diffusion pump to obtain high vacuum degree was designed and manufactured and various evaluation tests fur recognize the vacuum characteristic were accomplished.

  • PDF

Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure (SFRC구조물의 휨거동에 관한 해석적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

Improved Equivalent Beam Element Modeling Technique for Large Scale Wind-Turbine Composite Blade (대형 풍력발전용 복합재료 블레이드의 개선된 등가 모델링 기법)

  • Kim, Dong-Hyun;Park, Hyo-Geun;Kim, Dong-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.32-37
    • /
    • 2008
  • In this study, we have introduced an improved equivalent modeling technique for large scale composite wind-turbine blade. Conventional or general equivalent modeling procedure may give critical error in the analysis results because of geometric coupling effects. For the analyses of structural vibration and aeroelastic problems, the accuracy of equivalent structural models is very important since it can have high numerical efficiency and various practical applications. Three-dimensional realistic composite wind-turbine blade model is practically considered for numerical study. In order to validate the effect of the mass and the stiffness of the equivalent beam model, comparison study based on the natural vibration analysis has been conducted, and the accuracy levels of the conventional and modified equivalent modeling techniques are presented.

Analysis of Offshore Tubulars Subjected to Collision Impacts Using a Spring-Beam Model (스프링-보 모형을 이용한 해양구조물 원통부재의 충돌 해석)

  • 조상래;권종식
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.22-35
    • /
    • 1995
  • A simplified numerical procedure have proposed to trace the dynamic behaviour of offshore tubulars subjected to lateral collision impacts. The local denting and overall bending deformation of the struck tubular are represented by a non-linear spring and an elastic visco-plastic beam respectively. In this method a temporal finite difference method and a spacial finite element method are employed. Using this method various boundary conditions are able to considered and their effects on the extent of damage can be quantified. The extent of damage due to collision can be obtained as results of the dynamic analysis. The predictions using the proposed method have been correlated with existing test results and then the reliability of the procedure has been substantiated. The characteristics of the dynamic response of tubulars under lateral impacts are compared for simply supported roller and fixed end conditions and their effects on the extent of damage are specfied.

  • PDF

Analysis of a Composite Double Cantilever Beam with Stitched Reinforcements Under Mixed Mode Loading : Formulation (I)

  • Jang Insik;Sankar Bhavani V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.567-577
    • /
    • 2005
  • Several methods for improving the interlaminar strength and fracture toughness of composite materials are developed. Through-the-thickness stitching is considered one of the most common ways to prevent delamination. Stitching significantly increases the Mode I fracture toughness and moderately improves the Mode II fracture toughness. An analytical model has been developed for simulating the behavior of stitched double cantilever beam specimen under various loading conditions. For z-directional load and moment about the y-axis the numerical solutions are compared with the exact solutions. The derived formulation shows good accuracy when the relative error of displacement and rotation between numerical and exact solution were calculated. Thus we can use the present model with confidence in analyzing other problems involving stitched beams.

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.

Statistical Modeling of Pretilt Angle Control using Ion-beam Alignment on Nitrogen Doped Diamond-like Carbon Thin Film

  • Kang, Hee-Jin;Lee, Jung-Hwan;Han, Jung-Min;Yun, Il-Gu;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.297-300
    • /
    • 2006
  • The response surface modeling of the pretilt angle control using ion-beam (IB) alignment on nitrogen doped diamond-like carbon (NDLC) thin film layer is investigated. This modeling is used to analyze the variation of the pretilt angle under various process conditions. IB exposure angle and IB exposure time are considered as input factors. The analysis of variance technique is settled to analyze the statistical significance, and effect plots are also investigated to examine the relationships between the process parameters and the response. The model can allow us to reliably predict the pretilt angle with respect to the varying process conditions.