• Title/Summary/Keyword: varied-intensity

Search Result 399, Processing Time 0.022 seconds

Intensity of Infection and Development of Adult Clonorchis sinensis in Hamsters (햄스터에서의 병흡충 기생정도와 발육상)

  • 장동일;최동익
    • Parasites, Hosts and Diseases
    • /
    • v.26 no.1
    • /
    • pp.9-14
    • /
    • 1988
  • In an attempt to determine the susceptibility of inbred golden hamsters(Mesocricetus auratus) to the experimental infection with Clonorchis sinensis, twenty-five hamsters were divided into 5 groups and administered orally 5, 10, 20, 30 or 50 metacercariae each. The hamsters were killed on the 45th day after infection. The adult flukes were recovered from all hamsters. The overall recovery rate for the fluke was 57.9% with the range of 48.4% to 92.0%. As the number of the metacercariae given increased, a porportionate decrease in the recovery rate was found, the prepatent period of the fluke in the hamster varied from 15 to 17 days, with the average of 16 days. No significant differences in the development of the flukes were observed. Egg production expressed by EPG, increased step by step as the time elapsed. However, a tendency of decreasing egg laying capacity was observed with the increase of worm burden. It is suggested that the hamster is a suitable final host of C. sinensis.

  • PDF

Evaluation of Crack Growth Estimation Parameters of Thick-Walled Cylinder with Non-Idealized Circumferential Through-Wall Cracks (비 이상화된 원주방향 관통균열이 존재하는 두꺼운 배관의 균열 성장 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su;Park, Chi-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • The present paper provides the elastic stress intensity factors(SIFs) of thick-walled cylinder with non-idealized circumferential through-wall cracks. For estimating these elastic SIFs, the systematic three-dimensional(3D) elastic finite element(FE) analyses were performed. In order to consider practical shape of thick-walled cylinder and non-idealized circumferential through-wall crack, the values of thickness of cylinder, reference crack length and crack length ratio were systematically varied. As for loading conditions, axial tension, global bending and internal pressure were considered. In particular, in order to calculate the SIFs of thick-walled cylinder with non-idealized circumferential through-wall crack from those of thick-walled cylinder with idealized circumferential through-wall crack, the correction factor representing the effect of non-idealized crack on the SIFs were proposed in this paper. The present results can be applied to accurately evaluate the rupture probabilities of nuclear piping considering actual crack growth behaviors.

Expression of Ki67 in Papillary Thyroid Microcarcinoma and its Clinical Significance

  • Zhou, Yuan;Jiang, Hong-Gang;Lu, Ning;Lu, Bo-Hao;Chen, Zhi-Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1605-1608
    • /
    • 2015
  • Purpose: To investigate the expression of Ki67 protein in papillary thyroid microcarcinoma(PTMC), and to analyze its clinical significance. Materials and Methods: Ki67 protein expression was evaluated in the tissues of 108 human PTMC and 50 other benign papillary hyperplasia of thyroid specimens using immunohistochemistry. Results: The expression intensity of Ki67 in PTMC and benign papillary hyperplasia of thyroid specimens were $1.45{\pm}1.83%$ and $0.46{\pm}0.46%$.The positive expression rates were 46.3% and 14%. There were significant differences between these two groups (p<0.01). There was no significant variation of the expression intensity and positive expression rates of Ki67 in PTMC with gender, age, position of the tumor and the level of TSH pre-operation (p>0.05), but these parameters varied with tumor size, invasion by membrane and cervical lymph node metastasis (p<0.05 or p<0.01). Conclusions: The expression of Ki67 in PTMC was related to tumor size, invasion by membrane and cervical lymph node metastasis, and could be the important indicator for judging clinical progress and estimating prognosis.

Modeling of Microalgal Photosynthetic Activity Depending on Light Intensity, Light Pathlength and Cell Density (빛의 세기, 투과거리 및 세포농도에 따른 미세조류의 광합성 활성 모델링)

  • Yun, Yeong-Sang;Park, Jong-Mun
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.414-421
    • /
    • 1999
  • The influenced of light intensity, cell density, and light pathlength on photosynthetic activity of Chlorella vulgaris were investigated. Since the light respon curve varied according to reaction conditions, the parameters estimated from nonlinear regression were proved to be apparent and could not be applied to various situations. The light response model incorporating the light penetration through the microalgal suspension was developed based upon the spatial distribution of the photosynthetic activity. This model showed a good agreement with experimental data at different cell densities and light intensities. Using the model the effects of cell density and light pathlenth were simulated and some dicussions about optimization of operation conditions of photobioreactors were carried out. Concludingly, the developed model can be useful for predicting microalgal photosynthesis and for determining the optimal operating conditions.

  • PDF

Photoluminescence of ZnGa2O4-xMx:Mn2+ (M=S, Se) Thin Films

  • Yi, Soung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.13-16
    • /
    • 2003
  • Mn-doped $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film phosphors have been grown using a pulsed laser deposition technique under various growth conditions. The structural characterization carr~ed out on a series of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) films grown on MgO(l00) substrates usmg Zn-rich ceramic targets. Oxygen pressure was varied from 50 to 200 mTorr and Zn/Ga ratio was the function of oxygen pressure. XRD patterns showed that the lattice constants of the $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film decrease with the substitution of sulfur and selenium for the oxygen in the $ZnGa_2O_4$. Measurements of photoluminescence (PL) properties of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin films have indicated that MgO(100) is one of the most promised substrates for the growth of high quality $ZnGa_2O_{4-x}M_{x}$:$Mn^{2+}$ (M=S, Se) thin films. In particular, the incorporation of Sulfur or Selenium into $ZnGa_2O_4$ lattice could induce a remarkable increase in the intensity of PL. The increasing of green emission intensity was observed with $ZnGa_2O_{3.925}Se_{0.075}:$Mn^{2+}$ and $ZnGa_2O_{3.925}S_{0.05}$:$Mn^{2+}$ films, whose brightness was increased by a factor of 3.1 and 1.4 in comparison with that of $ZnGa_{2}O_{4}$:$Mn^{2+}$ films, respectively. These phosphors may promise for application to the flat panel displays.

Numerical optimization of transmission bremsstrahlung target for intense pulsed electron beam

  • Yu, Xiao;Shen, Jie;Zhang, Shijian;Zhang, Jie;Zhang, Nan;Egorov, Ivan Sergeevich;Yan, Sha;Tan, Chang;Remnev, Gennady Efimovich;Le, Xiaoyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.666-673
    • /
    • 2022
  • The optimization of a transmission type bremsstrahlung conversion target was carried out with Monte Carlo code FLUKA for intense pulsed electron beams with electron energy of several hundred keV for maximum photon fluence. The photon emission intensity from electrons with energy ranging from 300 keV to 1 MeV on tungsten, tantalum and molybdenum targets was calculated with varied target thicknesses. The research revealed that higher target material element number and electron energy leads to increased photon fluence. For a certain target material, the target thickness with maximum photon emission fluence exhibits a linear relationship with the electron energy. With certain electron energy and target material, the thickness of the target plays a dominant role in increasing the transmission photon intensity, with small target thickness the photon flux is largely restricted by low energy loss of electrons for photon generation while thick targets may impose extra absorption for the generated photons. The spatial distribution of bremsstrahlung photon density was analyzed and the optimal target thicknesses for maximum bremsstrahlung photon fluence were derived versus electron energy on three target materials for a quick determination of optimal target design.

Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions (최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상)

  • Z-Hun Kim;Sun Woo Hong;Jinu Kim;Byungrak Son;Mi-Kyung Kim;Yong Hwan Kim;Jin Hyun Seol;Su-Hwan Cheon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.

Freezing Behaviors of Frozen Foods Determined by $^1H$ NMR and DSC

  • Lee, Su-Yong;Moon, Se-Hun;Shim, Jae-Yong;Kim, Yong-Ro
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.102-105
    • /
    • 2008
  • The freezing patterns of commercial frozen foods were characterized by using proton nuclear magnetic resonance ($^1H$ NMR) relaxometry and differential scanning calorimetry (DSC). The liquid-like components like unfrozen water were investigated as a function of temperature (10 to $-40^{\circ}C$) and then compared with the unfrozen water content measured by DSC. The formation of ice crystals and the reduction of water in the foods during freezing were readily observed as a loss of the NMR signal intensity. The proton NMR relaxation measurement showed that the decreasing pattern of the liquid-like components varied depending on the samples even though they exhibited the same onset temperature of ice formation at around $0^{\circ}C$. When compared with the unfrozen water content obtained by the DSC, the NMR and DSC results could be closely correlated at the temperature above $-20^{\circ}C$. However, the distinct divergence in the values between 2 methods was observed with further decreasing temperatures probably due to the solid glass formation which was not detected by DSC.

Analysis of Temporal Change in Soil Erosion Potential at Haean-myeon Watershed Due to Climate Change

  • Lee, Wondae;Jang, Chunhwa;Kum, Donghyuk;Jung, Younghun;Kang, Hyunwoo;Yang, Jae E.;Lim, Kyoung Jae;Park, Youn Shik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.71-79
    • /
    • 2014
  • Climate change has been social and environmental issues, it typically indicates the trend changes of not only temperature but also rainfall. There is a need to consider climate changes in a long-term soil erosion estimation since soil loss in a watershed can be varied by the changes of rainfall intensity and frequency of torrential rainfall. The impacts of rainfall trend changes on soil loss, one of climate changes, were estimated using Sediment Assessment Tool for Effective Erosion Control (SATEEC) employing L module with current climate scenario and future climate scenario collected from the Korea Meteorological Administration. A 62 $km^2$ watershed was selected to explore the climate changes on soil loss. SATEEC provided an increasing trend of soil loss with the climate change scenarios, which were 182 ton/ha/year in 2010s, 169 ton/ha/year in 2020s, 192 ton/ha/year in 2030s,182 ton/ha/year in 2040s, and 218 ton/ha/year in 2050s. Moreover, it was found that approximately 90% of agricultural area in the watershed displayed the soil loss of 50 ton/ha/year which is exceeding the allow able soil loss regulation by the Ministry of Environment.

Effect of Overlayer Thickness of Hole Transport Material on Photovoltaic Performance in Solid-Sate Dye-Sensitized Solar Cell

  • Kim, Hui-Seon;Lee, Chang-Ryul;Jang, In-Hyuk;Kang, Wee-Kyung;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.670-674
    • /
    • 2012
  • The photovoltaic performance of solid-state dye-sensitized solar cells employing hole transport material (HTM), 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-MeOTAD), has been investigated in terms of HTM overlayer thickness. Two important parameters, soak time and spin-coating rate, are varied to control the HTM thickness. Decrease in the period of loading the spiro-MeOTAD solution on $TiO_2$ layer (soak time) leads to decrease in the HTM overlayer thickness, whereas decrease in spin-coating rate increases the HTM overlayer thickness. Photocurrent density and fill factor increase with decreasing the overlayer thickness, whereas open-circuit voltage remains almost unchanged. The improved photocurrent density is mainly ascribed to the enhanced charge transport rate, associated with the improved charge collection efficiency. Among the studied HTM overlayer thicknesses, ca. 230 nm-thick HTM overlayer demonstrates best efficiency of 4.5% at AM 1.5G one sun light intensity.