• Title/Summary/Keyword: variational systems

Search Result 125, Processing Time 0.021 seconds

Pedestrian-Based Variational Bayesian Self-Calibration of Surveillance Cameras (보행자 기반의 변분 베이지안 감시 카메라 자가 보정)

  • Yim, Jong-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1060-1069
    • /
    • 2019
  • Pedestrian-based camera self-calibration methods are suitable for video surveillance systems since they do not require complex calibration devices or procedures. However, using arbitrary pedestrians as calibration targets may result in poor calibration accuracy due to the unknown height of each pedestrian. To solve this problem in the real surveillance environments, this paper proposes a novel Bayesian approach. By assuming known statistics on the height of pedestrians, we construct a probabilistic model that takes into account uncertainties in both the foot/head locations and the pedestrian heights, using foot-head homology. Since solving the model directly is infeasible, we use variational Bayesian inference, an approximate inference algorithm. Accordingly, this makes it possible to estimate the height of pedestrians and to obtain accurate camera parameters simultaneously. Experimental results show that the proposed algorithm is robust to noise and provides accurate confidence in the calibration.

A generalized adaptive variational mode decomposition method for nonstationary signals with mode overlapped components

  • Liu, Jing-Liang;Qiu, Fu-Lian;Lin, Zhi-Ping;Li, Yu-Zu;Liao, Fei-Yu
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.75-88
    • /
    • 2022
  • Engineering structures in operation essentially belong to time-varying or nonlinear structures and the resultant response signals are usually non-stationary. For such time-varying structures, it is of great importance to extract time-dependent dynamic parameters from non-stationary response signals, which benefits structural health monitoring, safety assessment and vibration control. However, various traditional signal processing methods are unable to extract the embedded meaningful information. As a newly developed technique, variational mode decomposition (VMD) shows its superiority on signal decomposition, however, it still suffers two main problems. The foremost problem is that the number of modal components is required to be defined in advance. Another problem needs to be addressed is that VMD cannot effectively separate non-stationary signals composed of closely spaced or overlapped modes. As such, a new method named generalized adaptive variational modal decomposition (GAVMD) is proposed. In this new method, the number of component signals is adaptively estimated by an index of mean frequency, while the generalized demodulation algorithm is introduced to yield a generalized VMD that can decompose mode overlapped signals successfully. After that, synchrosqueezing wavelet transform (SWT) is applied to extract instantaneous frequencies (IFs) of the decomposed mono-component signals. To verify the validity and accuracy of the proposed method, three numerical examples and a steel cable with time-varying tension force are investigated. The results demonstrate that the proposed GAVMD method can decompose the multi-component signal with overlapped modes well and its combination with SWT enables a successful IF extraction of each individual component.

Semi-supervised learning of speech recognizers based on variational autoencoder and unsupervised data augmentation (변분 오토인코더와 비교사 데이터 증강을 이용한 음성인식기 준지도 학습)

  • Jo, Hyeon Ho;Kang, Byung Ok;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.578-586
    • /
    • 2021
  • We propose a semi-supervised learning method based on Variational AutoEncoder (VAE) and Unsupervised Data Augmentation (UDA) to improve the performance of an end-to-end speech recognizer. In the proposed method, first, the VAE-based augmentation model and the baseline end-to-end speech recognizer are trained using the original speech data. Then, the baseline end-to-end speech recognizer is trained again using data augmented from the learned augmentation model. Finally, the learned augmentation model and end-to-end speech recognizer are re-learned using the UDA-based semi-supervised learning method. As a result of the computer simulation, the augmentation model is shown to improve the Word Error Rate (WER) of the baseline end-to-end speech recognizer, and further improve its performance by combining it with the UDA-based learning method.

APPROXIMATION SCHEME FOR A CONTROL SYSTEM

  • KANG, SUNG-KWON
    • Honam Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.103-109
    • /
    • 1994
  • Piezoceramic patches as collocated actuator and sensors are widely used in mechanical control systems. An approximation scheme for computing feedback gains arising in heat flux stabilization problem with such control mechanism is introduced. The scheme is based on a finite element method and a variational approach.

  • PDF

3D buckling analysis of FGM sandwich plates under bi-axial compressive loads

  • Wu, Chih-Ping;Liu, Wei-Lun
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.111-135
    • /
    • 2014
  • Based on the Reissner mixed variational theorem (RMVT), finite rectangular layer methods (FRLMs) are developed for the three-dimensional (3D) linear buckling analysis of simply-supported, fiber-reinforced composite material (FRCM) and functionally graded material (FGM) sandwich plates subjected to bi-axial compressive loads. In this work, the material properties of the FGM layers are assumed to obey the power-law distributions of the volume fractions of the constituents through the thickness, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the field variables of each individual layer, respectively, and an h-refinement process is adopted to yield the convergent solutions. The accuracy and convergence of the RMVT-based FRLMs with various orders used for expansions of each field variables through the thickness are assessed by comparing their solutions with the exact 3D and accurate two-dimensional ones available in the literature.

PID regulator design for robot manipulators (로봇 매니퓰레이터에 대한 비례.적분.미분 조절기 설계)

  • Nam, Heon-Seong;Kim, Cheon-joong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.647-651
    • /
    • 1992
  • This paper presents a model-based control scheme for a robot manipulator to track a desired trajectory as closely as possible in spite of a wide range of manipulator motions and parameter uncertainties of links and payload. The scheme has two components: a nominal control and a variational control. The nominal control, generated from direct calculation of the manipulator dynamics along a desired trajectory, drives the manipulator to a neighborhood of the trajectory. Then a discrete-time PID regulator is designed based on the linearized dynamic model and Linear Quadratic(LQ) method, which generates the variational control that regulates perturbations in the vicinity of the desired trajectory.

  • PDF

A New Variational Level Set Evolving Algorithm for Image Segmentation

  • Fei, Yang;Park, Jong-Won
    • Journal of Information Processing Systems
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Level set methods are the numerical techniques for tracking interfaces and shapes. They have been successfully used in image segmentation. A new variational level set evolving algorithm without re-initialization is presented in this paper. It consists of an internal energy term that penalizes deviations of the level set function from a signed distance function, and an external energy term that drives the motion of the zero level set toward the desired image feature. This algorithm can be easily implemented using a simple finite difference scheme. Meanwhile, not only can the initial contour can be shown anywhere in the image, but the interior contours can also be automatically detected.

A Variational Model For Longitudinal Brain Tissue Segmentation

  • Tang, Mingjun;Chen, Renwen;You, Zijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3479-3492
    • /
    • 2022
  • Longitudinal quantification of brain changes due to development, aging or disease plays an important role in the filed of personalized-medicine applications. However, due to the temporal variability in shape and different imaging equipment and parameters, estimating anatomical changes in longitudinal studies is significantly challenging. In this paper, a longitudinal Magnetic Resonance(MR) brain image segmentation algorithm proposed by combining intensity information and anisotropic smoothness term which contain a spatial smoothness constraint and longitudinal consistent constraint into a variational framework. The minimization of the proposed energy functional is strictly and effectively derived from a fast optimization algorithm. A large number of experimental results show that the proposed method can guarantee segmentation accuracy and longitudinal consistency in both simulated and real longitudinal MR brain images for analysis of anatomical changes over time.

EXISTENCE OF THREE SOLUTIONS FOR A CLASS OF NAVIER QUASILINEAR ELLIPTIC SYSTEMS INVOLVING THE (p1, …, pn)-BIHARMONIC

  • Li, Lin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.57-71
    • /
    • 2013
  • In this paper, we establish the existence of at least three solutions to a Navier boundary problem involving the ($p_1$, ${\cdots}$, $p_n$)-biharmonic systems. We use a variational approach based on a three critical points theorem due to Ricceri [B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), 3084-3089].

EXISTENCE THEOREMS OF BOUNDARY VALUE PROBLEMS FOR FOURTH ORDER NONLINEAR DISCRETE SYSTEMS

  • YANG, LIANWU
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.399-410
    • /
    • 2019
  • In the manuscript, we concern with the existence of solutions of boundary value problems for fourth order nonlinear discrete systems. Some criteria for the existence of at least one nontrivial solution of the problem are obtained. The proof is mainly based upon the variational method and critical point theory. An example is presented to illustrate the main result.