• Title/Summary/Keyword: variational calculus

Search Result 21, Processing Time 0.03 seconds

PERIODIC SOLUTIONS FOR A QUASILINEAR NON-AUTONOMOUS SECOND-ORDER SYSTEM

  • Tian Yu;Zhang Guosheng;Ge Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.263-271
    • /
    • 2006
  • In this paper, a quasilinear second-order system with periodic boundary conditions is studied. By the least action principle and classical theorems of variational calculus, existence results of periodic solutions are obtained.

변분법과 최대.최소 : 역사적 고찰

  • 한찬욱
    • Journal for History of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2004
  • In this paper we investigate the origin of the variational calculus with respect to the extremal principle. We also study the role the extremal principle has played in the development of the calculus of variations. We deal with Dido's isoperimetric problem, Maupertius's least action principle, brachistochrone problem, geodesics, Johann Bernoulli's principle of virtual work, Plateau's minimal surface and Dirichlet principle.

  • PDF

A on-line learning algorithm for recurrent neural networks using variational method (변분법을 이용한 재귀신경망의 온라인 학습)

  • Oh, Oh, Won-Geun;Suh, Suh, Byung-Suhl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 1996
  • In this paper we suggest a general purpose RNN training algorithm which is derived on the optimal control concepts and variational methods. First, learning is regared as an optimal control problem, then using the variational methods we obtain optimal weights which are given by a two-point boundary-value problem. Finally, the modified gradient descent algorithm is applied to RNN for on-line training. This algorithm is intended to be used on learning complex dynamic mappings between time varing I/O data. It is useful for nonlinear control, identification, and signal processing application of RNN because its storage requirement is not high and on-line learning is possible. Simulation results for a nonlinear plant identification are illustrated.

  • PDF

Dynamic Modeling and Analysis of Flexible Mechanism With Joint Clearance (유연한 기구의 틈새관절 모델링 및 해석방법에 관한 연구)

  • 홍지수;김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3109-3117
    • /
    • 1994
  • To operate a flexible mechanism in high speed its weight must be reduced as far as the structural strength does not decrease too much, but a light-weighted mechanism causes undesirable elastodynamic responses deteriorating the system performance. Besides, clearance within the connections of mechanisms causes rapid wear, increased noise and vibration. Even if the problems described above must be considered in the initial design stage, there has been no effective design process which takes account of the correlation between dynamic characteristics of flexible mechanism and the clearance effect at the joint. In this study, the generalized elastodynamic governing equations which include dynamic characteristics and boundary conditions of flexible mechanism are derived by variational calculus and solved by using FFM theory. To take the clearance effect at joint into account a new dynamic model is presented and also the method of modified stiffness/damping matrix is proposed to activate the dynamic clearance model, which cooperates with the developed governing equation very easily. As the results of this study, the proposed method(modified stiffness/damping matrix) to calculate clearance effect was proved to be superior to the existing one(force reaction method) in solution convergency and calculation performance. Besides this method can be easily adopted to the complex shape joint without calculation of reaction force direction.

A History of the Cycloid Curve and Proofs of Its Properties (사이클로이드 곡선의 역사와 그 특성에 대한 증명)

  • Shim, Seong-A
    • Journal for History of Mathematics
    • /
    • v.28 no.1
    • /
    • pp.31-44
    • /
    • 2015
  • The cycloid curve had been studied by many mathematicians in the period from the 16th century to the 18th century. The results of those studies played important roles in the birth and development of Analytic Geometry, Calculus, and Variational Calculus. In this period mathematicians frequently used the cycloid as an example to apply when they presented their new mathematical methods and ideas. This paper overviews the history of mathematics on the cycloid curve and presents proofs of its important properties.

FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

  • Jumarie, Gyu
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.215-228
    • /
    • 2007
  • By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving non linear fractional partial differential equations. The key of this results is the fractional Taylor's series $f(x+h)=E_{\alpha}(h^{\alpha}D^{\alpha})f(x)$ where $E_{\alpha}(.)$ is the Mittag-Leffler function.

Optimal contact force control for a linear magnetostatic actuator (선형 Magnetostatic 작동기의 정밀 접촉력제어를 위한 최적제어기 설계)

  • ;Masada, G.;Busch-Vishniac, I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.272-275
    • /
    • 1997
  • When a manipulator makes contact with an object having position uncertainty, performance measures vary considerably with the control law. To achieve the optimal solution for this problem, an unique objective function that weights time and impact force is suggested and is solved with the help of variational calculus. The resulting optimal velocity profile is then modified to define a sliding mode for the impact and force control. The sliding mode control technique is used to achieve the desired performance. Sets of experiments are performed, which show superior performance compared to any existing controller.

  • PDF

INNOVATION OF SOME RANDOM FIELDS

  • Si, Si
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.793-802
    • /
    • 1998
  • We apply the generalization of Levy's infinitesimal equation $\delta$X(t) = $\psi$(X(s), s $\leq$ t, $Y_{t}$, t, dt), $t\in R^1$, for a random field X (C) indexed by a contour C or by a more general set. Assume that the X(C) is homogeneous in x, say of degree n, then we can appeal to the classical theory of variational calculus and to the modern theory of white noise analysis in order to discuss the innovation for the X (C.)

  • PDF

ON THE STABILITY OF IMMERSED MANIFOLDS IN $E^4$

  • Abdel-all, Nassar H.;Hussein, Rawya A.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.663-677
    • /
    • 1999
  • This work is concerned mainly with the variational problem on an immersion x:M $\rightarrow$} $E^4$ . A new approach is introduced depends on the normal variation in any arbitrary normal direction in the normal bundle. The results of this work are considered as a continuation and an extension to that obtained in [1], [2] and [3], [4] respectively. The methods adapted here are based on Cartan's methods of moving frames and the calculus of variations.

  • PDF