• Title/Summary/Keyword: variable.elastic foundation

Search Result 72, Processing Time 0.023 seconds

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates

  • Khetir, Hafid;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • In this paper, a new nonlocal trigonometric shear deformation theory is proposed for thermal buckling response of nanosize functionally graded (FG) nano-plates resting on two-parameter elastic foundation under various types of thermal environments. This theory uses for the first time, undetermined integral variables and it contains only four unknowns, that is even less than the first shear deformation theory (FSDT). It is considered that the FG nano-plate is exposed to uniform, linear and sinusoidal temperature rises. Mori-Tanaka model is utilized to define the gradually variation of material properties along the plate thickness. Nonlocal elasticity theory of Eringen is employed to capture the size influences. Through the stationary potential energy the governing equations are derived for a refined nonlocal four-variable shear deformation plate theory and then solved analytically. A variety of examples is proposed to demonstrate the importance of elastic foundation parameters, various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on critical stability temperatures of FG nano-plate.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions

  • Karami, Behrouz;Shahsavari, Davood;Ordookhani, Ali;Gheisari, Parastoo;Li, Li;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.689-702
    • /
    • 2020
  • The current study deals with the size-dependent free vibration analysis of graphene nanoplatelets (GNPs) reinforced polymer nanocomposite plates resting on Pasternak elastic foundation containing different boundary conditions. Based on a four variable refined shear deformation plate theory, which considers shear deformation effect, in conjunction with the Eringen nonlocal elasticity theory, which contains size-dependency inside nanostructures, the equations of motion are established through Hamilton's principle. Moreover, the effective material properties are estimated via the Halpin-Tsai model as well as the rule of mixture. Galerkin's mathematical formulation is utilized to solve the equations of motion for the vibrational problem with different boundary conditions. Parametrical examples demonstrate the influences of nonlocal parameter, total number of layers, weight fraction and geometry of GNPs, elastic foundation parameter, and boundary conditions on the frequency characteristic of the GNPs reinforced nanoplates in detail.

A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium

  • Yazid, Miloud;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • This work presents the buckling investigation of embedded orthotropic nanoplates such as graphene by employing a new refined plate theory and nonlocal small-scale effects. The elastic foundation is modeled as two-parameter Pasternak foundation. The proposed two-variable refined plate theory takes account of transverse shear influences and parabolic variation of the transverse shear strains within the thickness of the plate by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. Nonlocal governing equations for the single layered graphene sheet are obtained from the principle of virtual displacements. The proposed theory is compared with other plate theories. Analytical solutions for buckling loads are obtained for single-layered graphene sheets with isotropic and orthotropic properties. The results presented in this study may provide useful guidance for design of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Dynamic Stability Analysis of Nonconservative Systems for Variable Parameters using FE Method (유한요소기법을 이용한 비보존력이 작용하는 보-기둥 구조의 다양한 제변수 변화에 따른 동적 안정성 해석)

  • Lee Jun-Seok;Min Byoung-Cheol;Kim Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.351-363
    • /
    • 2004
  • Equation of motion of non conservative system considering mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory force's direction change and Winkler and Pasternak foundation stiffness matrix is derived. Also stability analysis due to the divergence and flutter loads is performed. And the influence of internal and external damping coefficient on flutter load is investigated applying the quadratic eigen problem solution. Additionally the influence of non-conservative force's direction parameter, internal and external damping and Winkler and Pasternak foundation on the critical load of Beck's and Leipholz's and Hauger's columns are investigated.

Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Singhal, Abhinav;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.265-276
    • /
    • 2020
  • A study that primarily focuses on nonlocal strain gradient plate model for the sole purpose of vibration examination, for graphene sheets under linearly variable in-plane mechanical loads. To study a better or more precise examination on graphene sheets, a new advance model was conducted which carries two scale parameters that happen to be related to the nonlocal as well as the strain gradient influences. Through the usage of two-variable shear deformation plate approach, that does not require the inclusion of shear correction factors, the graphene sheet is designed. Based on Hamilton's principle, fundamental expressions in regard to a nonlocal strain gradient graphene sheet on elastic half-space is originated. A Galerkin's technique is applied to resolve the fundamental expressions for distinct boundary conditions. Influence of distinct factors which can be in-plane loading, length scale parameter, load factor, elastic foundation, boundary conditions, and nonlocal parameter on vibration properties of the graphene sheets then undergo investigation.

A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.693-701
    • /
    • 2018
  • This paper develops a nonlocal strain gradient plate model for vibration analysis of graphene sheets under thermal environments. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Graphene sheet is modeled via a two-variable shear deformation plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on elastic substrate are derived via Hamilton's principle. Differential quadrature method (DQM) is implemented to solve the governing equations for different boundary conditions. Effects of different factors such as temperature rise, nonlocal parameter, length scale parameter, elastic foundation and aspect ratio on vibration characteristics a graphene sheets are studied. It is seen that vibration frequencies and critical buckling temperatures become larger and smaller with increase of strain gradient and nonlocal parameter, respectively.