• Title/Summary/Keyword: variable range hopping

Search Result 25, Processing Time 0.025 seconds

Dielectric Relaxation and Electrical Conduction Properties of La2NiO4+δ Ceramics (La2NiO4+δ세라믹스의 유전이완 및 전기전도특성)

  • Jung, Woo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.377-383
    • /
    • 2011
  • Thermoelectric power, dc conductivity, and the dielectric relaxation properties of $La_2NiO_{4.03}$ are reported in the temperature range of 77 K - 300 K and in a frequency range of 20 Hz - 1 MHz. Thermoelectric power was positive below 300K. The measured thermoelectric power of $La_2NiO_{4.03}$ decreased linearly with temperature. The dc conductivity showed a temperature variation consistent with the variable range hopping mechanism at low temperatures and the adiabatic polaron hopping mechanism at high temperatures. The low temperature dc conductivity mechanism in $La_2NiO_{4.03}$ was analyzed using Mott's approach. The temperature dependence of thermoelectric power and dc conductivity suggests that the charge carriers responsible for conduction are strongly localized. The relaxation mechanism has been discussed in the frame of the electric modulus and loss spectra. The scaling behavior of the modulus and loss tangent suggests that the relaxation describes the same mechanism at various temperatures. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with activation energy of ~ 0.106eV. At low temperature, variable range hopping and large dielectric relaxation behavior for $La_2NiO_{4.03}$ are consistent with the polaronic nature of the charge carriers.

Electrical Transport Properties of LaNi1-xTixO3(x∼0.5) Ceramics (LaNi1-xTixO3(x∼0.5) 세라믹스의 전기전도 특성)

  • Jung, Woo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.186-191
    • /
    • 2009
  • Thermoelectric power and resistivity are measured for the perovskite $LaNi_{1-x}Ti_xO_3$ ($x{\leq}0.5$) in the temperature range 77 K - 300 K. The measured thermoelectric power of $LaNi_{1-x}Ti_xO_3$ ($x{\leq}0.5$) increases linearly with temperature and is represented by A + BT. The x = 0.1 sample showed metallic behavior, the x = 0.3 showed metal and insulating transition around 150 K, and x = 0.5 showed insulating behavior the over the whole temperature range. The electrical resistivity of x = 0.1 shows linear temperature dependence over the whole temperature range and $T^2$ dependence. On the other hand, the electrical resistivity of x = 0.3 shows a linear relation between $ln{\rho}$ and $T^{-1/4}$ (variable range hopping mechanism) in the range of 77 K to 150 K. For x = 0.5, the temperature dependence of resistivity is characteristic of insulating materials; the resistivity data was fitted to an exponential law, such as ln(${\rho}/T$) and $T^{-1}$, which is usually attributed to a small polaron hopping mechanism. These experimental results are interpreted in terms of the spin polaron (x = 0.1) and variable range hopping (x = 0.3) or small polaron hopping (x = 0.5) of an almost localized $Ni^{3+}$ 3d polaron.

Electrical Transport Properties of La2/3TiO2.84 Ceramic (La2/3TiO2.84 세라믹스의 전기전도특성)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.858-863
    • /
    • 2004
  • The thermoelectric power, dc conductivity and magnetic properties of the cubic L $a_{2}$ 3/Ti $O_{2.84}$ were investigated. The thermoelectric power was negative below 350 K. The measured thermoelectric power of L $a_{2}$ 3/Ti $O_{2.84}$ increased linearly with temperature, in agreement with model proposed by Emin and Wood, and was represented by A+BT. Temperature dependence indicates that the charge carrier in this material is a small polaron. L $a_{2}$ 3/Ti $O_{2.84}$ exhibited a cross over from variable range hopping to small polaron hopping conduction at a characteristic temperature well below room temperature. The low temperature do conduction mechanism in L $a_{2}$ 3/Ti $O_{2.84}$ was analyzed using Mott's approach. Mott parameter analysis gave values for the density of state at Fermi level [N( $E_{F}$)] = 3.18${\times}$10$^{20}$ c $m^{-3}$ e $V^{-1}$ . The disorder energy ( $W_{d}$) was found to be 0.93 eV, However, it was noted that the value of the disorder energy was much higher than the high temperature activation energy. The exist linear relation between log($\sigma$T)와 1/T in the range of 200 to 300 K, the activation energy for small polaron hopping was 0.15 eV.

A Study on the Hopping Conducting Mechanism in PAN Carbon Fiber (PAN계 탄소섬유의 Hopping 전도기구에 관한 연구)

  • Han, Se-Won;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.65-67
    • /
    • 1989
  • To study hopping conducting mechanism in PAN(polyacrylonitrile) carbon fiber, the temperature and frequency dependence of electrical conductivity and magnetoresistance characteristics were investigated. Electrical conductivity in the range of $60^{\circ}K-300^{\circ}K$ show VRH(variable range hopping) properties which introduced by Mott's theory, and also such properties can be explained by the frequency dependence of electrical conductivity below $5{\times}10^6$ Hz. The negative magnetoresistance observed below 35KG magnetic field, and the properties difference between M40 and T300 with increasing magnetic field is supposed due to on effect connected with crystalline state and orientation of structure.

  • PDF

Electrical Transport Properties of Gd0.33Sr0.67FeO3 Ceramics (Gd0.33Sr0.67FeO3 세라믹스의 전기전도 특성)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.131-135
    • /
    • 2006
  • In this study, the dielectric, magnetic and transport properties of $Gd_{0.33}Sr_{0.67}FeO_3$ have been analyzed. The dielectric loss anomaly was found to be around 170 K. The activation energy corresponding to relaxation process of this dielectric anomaly was 0.17 eV. From the temperature dependence of the characteristic frequency, we concluded that the elementary process of the dielectric relaxation peak observed is correlated with polaron hopping between $Fe^{3+}\;and\;Fe^{4+}$ ions. The electrical resistivity displayed thermally activated temperature dependence above 200 K with an activation energy of 0.16 eV. In addition, the temperature dependence of thermoelectric power and resistivity suggests that the charge carrier responsible for conduction is strongly localized.

Effect of Partial Substitution of Magnetic Rare Earths for La on the Structure, Electric Transport And Magnetic Properties of Oxygen Deficient Phase LaSr2MnCrO7-δ

  • Singh, Devinder;Sharma, Sushma;Mahajan, Arun;Singh, Suram;Singh, Rajinder
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1679-1683
    • /
    • 2013
  • Intergrowth perovskite type complex oxides $La_{0.8}Ln_{0.2}Sr_2MnCrO_{7-{\delta}}$ (Ln=La, Nd, Gd, and Dy) have been synthesized by sol-gel method. Rietveld profile analysis shows that the phases crystallize with tetragonal unit cell in the space group I4/mmm. The unit cell parameters a and c decrease with decreasing effective ionic radius of the lanthanide ion. The magnetic studies suggest that the ferromagnetic interactions are dominant due to $Mn^{3+}$-O-$Mn^{4+}$ and $Mn^{3+}$-O-$Cr^{3+}$ double exchange interactions. Both Weiss constant (${\theta}$) and Curie temperature ($T_C$) increase with decreasing ionic radius of lanthanide ion. It was found that the transport mechanism is dominated by Mott's variable range hopping (VRH) model with an increase of Mott localization energy.

Characterization of Stretchable Polypyrrole Films Prepared by Chemical and Electrochemical Method (화학적 및 전기화학적 방법으로 합성한 연신성 폴리피롤 필름의 특성)

  • 장관식;문봉진;오응주;홍장후
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.323-329
    • /
    • 2003
  • Stretchable Polypyrrole films using functionalized doping agent, di(2-ethylhexyl) sulfosuccinate sodium salt (NaDEHS), were synthesized by chemical and electrochemical method. Chemically and electrochemically Prepared Polypyrrole films were stretch-oriented (L/L$\_$0/= 1.0 ∼ 2.5) by zone drawing method and the electrical conductivities were measured. As the draw ratio was increased, the electrical conductivities were increased. This result was confirmed by the increase in crystallinity through the increase in draw ratio. The temperature dependence of electrical conductivity showed that 3D-variable range hopping model (L/L$\_$0/ = 1.0∼2.0) and ID-VRH model (L/L$\_$0/ = 2.5) gave the best fit to the data for stretched Ppy-DEHS films.

Preparation and Electrical Properties of Electro-conducting Glasses Containing $\textrm{V}_{2}\textrm{O}_{5}$ ($\textrm{V}_{2}\textrm{O}_{5}$계 전자 전도성 유리의 제조 및 전기적 특성)

  • Kim, Il-Gu;Park, Hui-Chan;Son, Myeong-Mo;Lee, Heon-Su
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 1997
  • Vanadate glasses using $B_2O_3$ as a network former and with CuO additive were mainly investigated in relation to electrical properties. Crystalline phases formed by heat-treatment in each composition were examined and dc electrical conductivity changes of the glasses were analyzed. Crystalline phases were identified as $V_3O_5,\;a-CuV_2O_6\;and\;{\beta}-CuV_2O_6$ by XRD analysis. Crystallization degrees of $V_2O_5$ and ${\beta}-CuV_2O_6$ were little changed with heat-treatment time, but those of ${\alpha}u-CuV_2O_6$ were changed sharply with heat-treatment time. The more crystallization of ${\alpha}u-CuV_2O_6$ occurred, the higher electrical conductivity was observed. Electrical conductivities with $10^{-2}~10^{-4}/{\Omega}/cm$ at room temperature(303K) could be obtained by controlling the glass compositions. The electrical conductivities were increased with increasing of $V_20_5$ content and decreasing of alkality($CuO/B_2O_3$). In this study, electron was proved to be charge carrier by seebeck coefficient measurement. Accordingly, the glasses are believed to be n-type semiconductor. Calculated activation energies for the conduction were in the range 0.098-0.124 eV. Electrical conduction mechanism was small polaron hopping without showing variable range hopping in the temperature range $30~200^{\circ}C$.

  • PDF

A Study on the Electrical Properties of Amorphous Sb-Bi-Te Thin Films (비정질 Sb-Bi-Te 박막의 전기적 특성에 관한 연구)

  • ;;D. Mangalaraj
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.220-226
    • /
    • 2002
  • Amorphous $Sb_{2-x}Bi_xTe_3$ (x = 0.0, 0.5 and 1.0) thin films were prepared by vacuum evaporation. The resistivity of 7he films decreases from 1.4{\times}10^{-2}$ to $8.84{\times}10^{-5}\Omega cm$ and the type of conductivity changes from p to n with the increase of the x value of the films. D.C. conduction studies on these films ate performed at various electric fields in the temperature range of 303-403 K. At low electric fields, two types of conduction mechanisms, i.e. the variable range hopping and the phonon assisted hopping are found to be responsible for the conduction, depending upon the temperature. The activation energy decreases from 0.082 to 0.076 eV in the temperature range of 303-363 K and from 0.47-0.456 eV in the second range of 363-403 K, indicating the shift of the Fermi level towards the conduction band edge and hence the change of the conduction from P to n type with the increase of the Bi concentration. Poole-Frankel emission dominates at high fields. The shape of the potential well of the localized centre is deduced and the mean free path of the charge carriers is also calculated.

Transport Properties of Polypyrrole Films Doped with Sulphonic Acids

  • Basavaraja, C.;Kim, Na-Ri;Jo, Eun-Ae;Pierson, R.;Huh, Do-Sung;Venkataraman, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2701-2706
    • /
    • 2009
  • The polymer blends containing polypyrrole (PPy) and the sulphonic acids such as β-naphthalene sulfonic acid (NSA), camphor sulfonic acid (CSA), and dodecylbenzenesulfonic acid (DBSA) were synthesized by in situ deposition technique in an aqueous media using ammonium per sulfate (APS) as an initiator. The obtained films were characterized by scanning electron microscopy (SEM), and the thermal behavior of these polymer blends was analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The temperature-dependent (DC) conductivity of the obtained films shows a semiconducting behavior with a negative temperature coefficient of resistivity (TCR). The conductivity data were also analyzed through Mott’s equation, which provides the variable range hopping model in three dimensions. The parameters such as density of states at the Fermi energy, hopping energy, and hopping distance were calculated for PPy, PPy-NSA, PPy-CSA, and PPy-DBSA films, and the data were compared.