• Title/Summary/Keyword: variable permeability coefficient condition

Search Result 6, Processing Time 0.019 seconds

Dynamic evolution characteristics of water inrush during tunneling through fault fracture zone

  • Jian-hua Wang;Xing Wan;Cong Mou;Jian-wen Ding
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • In this paper, a unified time-dependent constitutive model of Darcy flow and non-Darcy flow is proposed. The influencing factors of flow velocity are discussed, which demonstrates that permeability coefficient is the most significant factor. Based on this, the dynamic evolution characteristics of water inrush during tunneling through fault fracture zone is analyzed under the constant permeability coefficient condition (CPCC). It indicates that the curves of flow velocity and hydrostatic pressure can be divided into typical three stages: approximate high-velocity zone inside the fault fracture zone, velocity-rising zone near the tunnel excavation face and attenuation-low velocity zone in the tunnel. Furthermore, given the variation of permeability coefficient of the fault fracture zone with depth and time, the dynamic evolution of water flow in the fault fracture zone under the variable permeability coefficient condition (VPCC) is also studied. The results show that the time-related factor (α) affects the dynamic evolution distribution of flow velocity with time, the depth-related factor (A) is the key factor to the dynamic evolution of hydrostatic pressure.

The Effect of Paper Permeability on Cigarette Properties (종이의 투기도가 담배 물성에 미치는 영향)

  • 김영호;한영림;이문용;이영택;김정열
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.64-72
    • /
    • 2001
  • The cigarette ventilation affects not only the amount of tar and nicotine delivery by a cigarette, but also the composition of the smoke. Therefore, it is important to stabilize of variability in cigarette ventilation that would be affected by changes in cigarette components. This work was conducted to determine the major factors that influence the cigarette ventilation and also to provide fundamental informations for improving the uniformity of cigarette performances. To evaluate the effect of cigarette ventilation as a dependant variable, the three independent factors were the air permeability of plugwrap, tipping paper and the filter pressure drop. We determined the effect of paper permeability on ventilation variability and the optimum condition in combinations of independent factors. The mean of cigarette ventilation was increased as plugwrap permeability increases, particularly at 26,000 CU. However, it was exhibited that standard deviation and coefficient of variation of the cigarette ventilation were decreased with increasing plugwrap permeability. At the 600 CU and 1,200 CU of tipping paper permeability, process capability index (Cp) of the cigarette ventilation increased as plugwrap permeability increases. Following the optimum condition of cigarette ventilation induced by fitted regression equation, one was to optimize 50% ventilation level is by combination with plugwrap permeability of 16,000 CU, tipping paper permeability of 810 CU, filter pressure drop of 319 mm$H_2O$, respectively.

  • PDF

The Effect of Paper Permeability on Cigarette Properties (종이의 투기도가 담배 물성에 미치는 영향)

  • Young-Hoh Kim;Young-Rim Han;Moon-Yang Lee;Young- Taek Lee;Chung-Ryul Kim
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.62-62
    • /
    • 2001
  • The cigarette ventilation affects not only the amount of tar and nicotine delivery by a cigarette, but also the composition of the smoke. Therefore, it is important to stabilize of variability in cigarette ventilation that would be affected by changes in cigarette components. This work was conducted to determine the major factors that influence the cigarette ventilation and also to provide fundamental informations for improving the uniformity of cigarette performances. To evaluate the effect of cigarette ventilation as a dependant variable, the three independent factors were the air permeability of plugwrap, tipping paper and the filter pressure drop. We determined the effect of paper permeability on ventilation variability and the optimum condition in combinations of independent factors. The mean of cigarette ventilation was increased as plugwrap permeability increases, particularly at 26,000 CU. However, it was exhibited that standard deviation and coefficient of variation of the cigarette ventilation were decreased with increasing plugwrap permeability. At the 600 CU and 1,200 CU of tipping paper permeability, process capability index (Cp) of the cigarette ventilation increased as plugwrap permeability increases. Following the optimum condition of cigarette ventilation induced by fitted regression equation, one was to optimize 50% ventilation level is by combination with plugwrap permeability of 16,000 CU, tipping paper permeability of 810 CU, filter pressure drop of 319 mm$H_2O$, respectively.

Proposal of Models to Estimate the Coefficient of Permeability of Soils on the Natural Terrain considering Geological Conditions (지질조건에 따른 자연사면 토층의 투수계수 산정모델 제안)

  • Jun, Duk-Chan;Song, Young-Suk;Han, Shin-In
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2010
  • The soil tests have been performed on the specimens obtained from about 1,150 sites including landslides and non-landslides areas in natural terrains for last 10 years. Based on the results of those tests, the average soil properties are estimated and the simple equations for estimating permeability are proposed according to geologic conditions. The average permeability in Granite and Mudstone sites is higher than other sites and the content of silt and clay in Mudstone and Gneiss sites is higher than other sites. The correlation analysis and the regression analysis were performed to estimate the coefficient of permeability according to geological conditions. As the result of the correlation analysis, the coefficient of permeability is selected as a dependent variable, and the silt and clay contents, the water contents and the dry unit weights are selected as independent variables. As the result of the regression analysis, the silt and clay contents and the void ratio were involved commonly in the linear regression equations according to geological conditions. To verify the proposed the linear regression equations, the measured result of the coefficient of permeability at other sites was compared with the result predicted with the proposed equations. As the result of comparison, there were a little bit different between them for some data. However the difference was relatively small. Therefore, the linear regression equations for estimating the coefficient of permeability according to geological conditions may be applied to Korean soils. However, these equations should be verified and corrected continuously to improve the accuracy.

Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry

  • Mu, Wenqiang;Li, Lianchong;Liu, Xige;Zhang, Liaoyuan;Zhang, Zilin;Huang, Bo;Chen, Yong
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-369
    • /
    • 2020
  • Different from the conventional planar fracture and simplified Newton model, for power-law slurries with a lower water-cement ratio commonly used in grouting engineering, flow model in geological rough fractures is built based on ten standard profiles from Barton (1977) in this study. The numerical algorithm is validated by experimental results. The flow mechanism, grout superiority, and water plugging of pseudo plastic slurry are revealed. The representations of hydraulic grouting properties for JRCs are obtained. The results show that effective plugging is based on the mechanical mechanisms of the fluctuant structural surface and higher viscosity at the middle of the fissure. The formulas of grouting parameters are always variable with the roughness and shear movement, which play a key role in grouting. The roughness can only be neglected after reaching a threshold. Grouting pressure increases with increasing roughness and has variable responses for different apertures within standard profiles. The whole process can be divided into three stationary zones and three transition zones, and there is a mutation region (10 < JRCs < 14) in smaller geological fractures. The fitting equations of different JRCs are obtained of power-law models satisfying the condition of -2 < coefficient < 0. The effects of small apertures and moderate to larger roughness (JRCs > 10.8) on the permeability of surfaces cannot be underestimated. The determination of grouting parameters depends on the slurry groutability in terms of its weakest link with discontinuous streamlines. For grouting water plugging, the water-cement ratio, grouting pressure and grouting additives should be determined by combining the flow conditions and the apparent widths of the main fracture and rough surface. This study provides a calculation method of grouting parameters for variable cement-based slurries. And the findings can help for better understanding of fluid flow and diffusion in geological fractures.

A study of compaction ratio and permeability of soil with different water content (축제용흙의 함수비 변화에 의한 다짐율 및 수용계수 변화에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2456-2470
    • /
    • 1971
  • Compaction of soil is very important for construction of soil structures such as highway fills, embankment of reservoir and seadike. With increasing compaction effort, the strength of soil, interor friction and Cohesion increas greatly while the reduction of permerbilityis evident. Factors which may influence compaction effort are moisture content, grain size, grain distribution and other physical properties as well as the variable method of compaction. The moisture content among these parameter is the most important thing. For making the maximum density to a given soil, the comparable optimum water content is required. If there is a slight change in water content when compared with optimum water content, the compaction ratio will decrease and the corresponding mechanical properties will change evidently. The results in this study of soil compaction with different water content are summarized as follows. 1) The maximum dry density increased and corresponding optimum moisture content decreased with increasing of coarse grain size and the compaction curve is steeper than increasing of fine grain size. 2) The maximum dry density is decreased with increasing of the optimum water content and a relationship both parameter becomes rdam-max=2.232-0.02785 $W_0$ But this relstionship will be change to $r_d=ae^{-bw}$ when comparable water content changes. 3) In case of most soils, a dry condition is better than wet condition to give a compactive effort, but the latter condition is only preferable when the liquid limit of soil exceeds 50 percent. 4) The compaction ratio of cohesive soil is greeter than cohesionless soil even the amount of coarse grain sizes are same. 5) The relationship between the maximum dry density and porosity is as rdmax=2,186-0.872e, but it changes to $r_d=ae^{be}$ when water content vary from optimum water content. 6) The void ratio is increased with increasing of optimum water content as n=15.85+1.075 w, but therelation becames $n=ae^{bw}$ if there is a variation in water content. 7) The increament of permeabilty is high when the soil is a high plasticity or coarse. 8) The coefficient of permeability of soil compacted in wet condition is lower than the soil compacted in dry condition. 9) Cohesive soil has higher permeability than cohesionless soil even the amount of coarse particles are same. 10) In generall, the soil which has high optimum water content has lower coefficient of permeability than low optimum water content. 11) The coefficient of permeability has a certain relations with density, gradation and void ratio and it increase with increasing of saturation degree.

  • PDF