• Title/Summary/Keyword: variable parameter

Search Result 1,103, Processing Time 0.03 seconds

Hydraulic Parameter Evaluation by Sensitivity Analysis of Constant and Variable Rate Pump Test in Leaky Fractal Aquifer (누수성 프락탈 대수층내의 일정 또는 다단계 양수시험의 민감성 분석에 의한 수리상수 결정)

  • 함세영
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.311-319
    • /
    • 1994
  • This paper presents a sensitivity analysis to obtain best fit of hydraulic parameters of leaky fractal aquifer. The sensitivity analysis uses the least squares method. The hydraulic parameters (generalized transmissivity and generalized storage coefficient) can be easily determined by the sensitivity analysis for various flow dimensions and different values of the leakage factor. Furthermore, the sensitivity analysis was applied to variable-rate pump tast at several abstraction wells, A computer program was developed to evaluate the hydraulic parameters by the sensitivity analysis.

  • PDF

CERTAIN GENERALIZED AND MIXED TYPE GENERATING RELATIONS: AN OPERATIONAL APPROACH

  • Khan, Rehana;Kumar, Naresh;Qamar, Ruma
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.473-484
    • /
    • 2018
  • In this paper, we discuss how the operational calculus can be exploited to the theory of generalized special functions of many variables and many indices. We obtained the generating relations for 3-index, 3-variable and 1-parameter Hermite polynomials. Some mixed type generating relations and bilateral generating relations of many indices and many variable like Lagurre-Hermite and Hermite-Sister Celine's polynomials are also obtained. Further we generalize some results on old symbolic notations using operational identities.

Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique

  • Rajasekaran, Sundaramoorthy;Wilson, Antony John
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.269-294
    • /
    • 2013
  • This paper is concerned with the determination of exact buckling loads and vibration frequencies of variable thickness isotropic plates using well known finite difference technique. The plates are subjected to uni, biaxial compression and shear loadings and various combinations of boundary conditions are considered. The buckling load is found out as the in plane load that makes the determinant of the stiffness matrix equal to zero and the natural frequencies are found out by carrying out eigenvalue analysis of stiffness and mass matrices. New and exact results are given for many cases and the results are in close agreement with the published results. In this paper, like finite element method, finite difference method is applied in a very simple manner and the application of boundary conditions is also automatic.

Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.651-658
    • /
    • 2009
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

Implemented of Fuzzy PI+PD Logic circuits for DC Servo Control Using Decomposition of $\alpha$-level fuzzy set ($\alpha$-레벨 퍼지집합 분해에 의한 직류 서보제어용 퍼지 PI+PD 로직회로 구현)

  • Hong, J.P.;Won, T.H.;Jeong, J.W.;Lee, Y.S.;Lee, S.M.;Hong, S.I.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.127-129
    • /
    • 2008
  • This paper describes a method of approximate reasoning for fuzzy control of servo system, based on decomposition of -level fuzzy sets. It is propose that logic circuits for fuzzy PI+PD are a body from fuzzy inference to defuzzificaion in cases where the output variable u directly is generated PWM. The effectiveness for robust and faster response of the fuzzy control scheme is verified for a variable parameter by comparison with a PID control and fuzzy control. A position control of DC servo system with a fuzzy logic controller successfully demonstrated.

  • PDF

Comparison Study for Data Fusion and Clustering Classification Performances (다구찌 디자인을 이용한 데이터 퓨전 및 군집분석 분류 성능 비교)

  • 신형원;손소영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.601-604
    • /
    • 2000
  • In this paper, we compare the classification performance of both data fusion and clustering algorithms (Data Bagging, Variable Selection Bagging, Parameter Combining, Clustering) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are (1) correlation among input variables (2) variance of observation (3) training data size and (4) input-output function. Since the relationship between input & output is not typically known, we use Taguchi design to improve the practicality of our study results by letting it as a noise factor. Experimental study results indicate the following: Clustering based logistic regression turns out to provide the highest classification accuracy when input variables are weakly correlated and the variance of data is high. When there is high correlation among input variables, variable bagging performs better than logistic regression. When there is strong correlation among input variables and high variance between observations, bagging appears to be marginally better than logistic regression but was not significant.

  • PDF

Design of an new variable structure model following control system for robot manipulators

  • Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.324-327
    • /
    • 1994
  • In this paper, a new design method of variable structure model following control system(VSMFCS) for robot manipulators is proposed. The proposed controller overcomed reaching phase problem by using function augmenting scheme to the sliding surface. Therefore, it can be guaranteed that the overall system always has a robust property against parameter variations and external disturbances. Furthermore, the proposed controller does not use the model state, .chi.$_{m}$, different from other previous works. Regardless of not using the model state, the model following error dynamics, virtual dynamics, is shown to be globally exponentially stable. The efficiency of the proposed method has been demonstrated by an example.e.

  • PDF

An Investigation on Nonlinear Characteristics of Aerodynamic Torque for Variable-Speed Variable-Pitch Wind Turbine (가변속도-가변피치 풍력터빈의 공기역학적 토크의 비선형 특성에 관한 고찰)

  • Lim, Chae-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.29-34
    • /
    • 2011
  • Aerodynamic torque of wind turbine is highly nonlinear due to the nonlinear interactions between wind and blade. The aerodynamic nonlinearity is represented by nonlinear power and torque coefficients which are functions of wind speed, rotational speed of rotor, and pitch angle of blade. It is essential from the viewpoint of understanding and analysis of dynamic characteristics for wind turbine to linearize the aerodynamic torque and define aerodynamic nonlinear parameters as derivatives of aerodynamic torque with respect to the three parameters. In this paper, a linearization method of the aerodynamic torque from power coefficient is presented through differentiating it by the three parameters. And steady-state values of three aerodynamic nonlinear parameters according to wind speed are obtained and their nonlinear characteristics are investigated.

Stabilization of Ball-Beam System using RVEGA SMC (RVEGA SMC를 이용한 Ball-Beam 시스템의 안정화)

  • Kim, Tae-Woo;Lee, Joon-Tark
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1327-1334
    • /
    • 1999
  • The stabilization control of ball-beam system is difficult because of its nonlinearity and structural unstability. Futhermore, a series of classical methods such as the PID and the full state feedback controller(FSFC) based on the local linearizations have narrow stabilizable regions. At the same time, the fine tunings of their gain parameters are also troublesome. Therefore, in this paper, three improved design techniques of stabilization controller for a ball-beam system were proposed. These parameter tuning methods in the double PID controller(DPIDC), the FSFC and the a sliding mode controller(SMC) were dependent upon the Real Value Elitist Genetic Algorithm (RVEGA). Finally, by applying the DPIDC, the FSFC and the Real Variable Elitist Genetic Algorithm based Sliding Mode Control(RVEGA SMC) to the stabilizations of a ball-beam system, the performances of the RVEGA SMC technique were showed to be superior to those of two other type controllers.

  • PDF

Performance Improvement of the Nonlinear Fuzzy PID Controller

  • Kim, Jong Hwa;Lim, Jae Kwon;Joo, Ha Na
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.927-934
    • /
    • 2012
  • This paper suggests a new fuzzy PID controller with variable parameters which improves the shortage of the fuzzy PID controller with fixed parameters suggested in [9]. The derivation procedure follows the general design procedure of the fuzzy logic controller, while the resultant control law is the form of the conventional PID controller. Therefore, the suggested controller has two advantages. One is that it has only four fuzzy linguistic rules and analytical form of control laws so that the real-time control system can be implemented based on low-price microprocessors. The other is that the PID control action can always be achieved with time-varying PID controller gains only by adjusting the input and output scalers at each sampling time.