• Title/Summary/Keyword: variable parameter

Search Result 1,103, Processing Time 0.025 seconds

Chattering Reduction of Variable Structure Controller for Position System of Induction Motor (유도전동기의 위치제어 시스템을 위한 가변구조제어기의 떨림저감)

  • Kim, Young-Jo;Kim, Hyun-Jung
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.39-47
    • /
    • 1998
  • It has been known that variable structure control(VSC) has theoretically powerful control technique of providing fast response, no overshoot, and very robust control with respect to system parameter variations and disturbances. However, the technique has not become more widely extended in the industrial circles because chattering phenomenon which may excite high-frequency unmodelled plant dynamics and damage to system components exists. In this paper, a modified variable structure control(MVSC) is developed to alleviate these problems which are applied to the position control of induction motor. While the conventional VSC makes the structure of the system change with high-frequency switching on the center of the one switching surface, in the MVSC two switching surface are used to establish a sliding sector. The structure of the system will be changed with low-frequency switching. Therefore, the proposed algorithm has the properties of reducing chattering, retaining the benefits achieved in the conventional VSC, and working even under the influences of parameter variations. Experimental results show the effectiveness of the control strategy proposed here for the position control of induction motor.

  • PDF

Analysis of Steady State Error on Simple FLC (단순 FLC의 정상상태오차 해석)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.897-901
    • /
    • 2011
  • This paper presents a TS (Takagi-Sugeno) type FLC (Fuzzy Logic Controller) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC controller. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In the design of the system, we use a variety of response characteristics like stability, rising time, overshoot, settling time, steady-state error. In particular, it is important for a stable system design to predict the steady-state error because the system's steady-state response of the system is related to the overall quality. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC in the view of steady-state error. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. As well as the FLC parameters of consequence linear equations affect the stability of the system, it also affects the steady-state error. In this study, The system according to the parameter of consequence linear equations of FLC predict the steady-state error and the method to remove the system's steady-state error is proposed using the prediction error value. The simulation is carried out to determine the usefulness of the proposed method.

Concurrent Equalizer with Squared Error Weight-Based Tap Coefficients Update (오차 제곱 가중치기반 랩 계수 갱신을 적용한 동시 등화기)

  • Oh, Kil-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.157-162
    • /
    • 2011
  • For blind equalization of communication channels, concurrent equalization is useful to improve convergence characteristics. However, the concurrent equalization will result in limited performance enhancement by continuing concurrent adaptation with two algorithms after the equalizer converges to steady-state. In this paper, to improve the convergence characteristics and steady-state performance of the concurrent equalization, proposed is a new concurrent equalization technique with variable step-size parameter and weight-based tap coefficients update. The proposed concurrent vsCMA+DD equalization calculates weight factors using error signals of the variable step-size CMA (vsCMA) and DD (decision-directed) algorithm, and then updates the two equalizers based on the weights respectively. The proposed method, first, improves the error performance of the CMA by the vsCMA, and enhances the steady-state performance as well as the convergence speed further by the weight-based tap coefficients update. The performance improvement by the proposed scheme is verified through simulations.

Comparing MCMC algorithms for the horseshoe prior (Horseshoe 사전분포에 대한 MCMC 알고리듬 비교 연구)

  • Miru Ma;Mingi Kang;Kyoungjae Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.103-118
    • /
    • 2024
  • The horseshoe prior is notably one of the most popular priors in sparse regression models, where only a small fraction of coefficients are nonzero. The parameter space of the horseshoe prior is much smaller than that of the spike and slab prior, so it enables us to efficiently explore the parameter space even in high-dimensions. However, on the other hand, the horseshoe prior has a high computational cost for each iteration in the Gibbs sampler. To overcome this issue, various MCMC algorithms for the horseshoe prior have been proposed to reduce the computational burden. Especially, Johndrow et al. (2020) recently proposes an approximate algorithm that can significantly improve the mixing and speed of the MCMC algorithm. In this paper, we compare (1) the traditional MCMC algorithm, (2) the approximate MCMC algorithm proposed by Johndrow et al. (2020) and (3) its variant in terms of computing times, estimation and variable selection performance. For the variable selection, we adopt the sequential clustering-based method suggested by Li and Pati (2017). Practical performances of the MCMC methods are demonstrated via numerical studies.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

An Evaluation of Clamping Characteristics for High Strength Bolts with Variable Bolt Lengths (고력볼트 길이에 따른 체결 특성 평가)

  • Lee, Kang Min;Kim, Kang Seok;Nah, Hwan Seon;Lee, Hyeon Ju;Oh, Kyung Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.127-134
    • /
    • 2011
  • It has been reported that the length parameter of high strength bolts results in the variance in tensile loads. The required turn of nut for each length is specified in AISC RCSC specification. There is no specific regulation datum about the bolt length in the two national codes and specifications in Korea. Therefore this study focused on evaluating influence of the clamping torque subjected to length parameter of high strength bolts. Two types of high strength bolt specimens were manufactured and tested; High Strength Hexagon bolt specified in ASTM A490 and Torque Shear Bolt in KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut, and the clamping force were analyzed to review whether length parameter affects on the required tensile strength. To evaluate the effects of the length parameter on the torque and turn of nut for the required strength and clamping force, statistical analysis was also carried out.

Robust parameter set selection of unsteady flow model using Pareto optimums and minimax regret approach (파레토 최적화와 최소최대 후회도 방법을 이용한 부정류 계산모형의 안정적인 매개변수 추정)

  • Li, Li;Chung, Eun-Sung;Jun, Kyung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2017
  • A robust parameter set (ROPS) selection framework for an unsteady flow model was developed by combining Pareto optimums obtained by outcomes of model calibration using multi-site observations with the minimax regret approach (MRA). The multi-site calibration problem which is a multi-objective problem was solved by using an aggregation approach which aggregates the weighted criteria related to different sites into one measure, and then performs a large number of individual optimization runs with different weight combinations to obtain Pareto solutions. Roughness parameter structure which can describe the variation of Manning's n with discharges and sub-reaches was proposed and the related coefficients were optimized as model parameters. By applying the MRA which is a decision criterion, the Pareto solutions were ranked based on the obtained regrets related to each Pareto solution, and the top-rated one due to the lowest aggregated regrets of both calibration and validation was determined as the only ROPS. It was found that the determination of variable roughness and the corresponding standardized RMSEs at the two gauging stations varies considerably depending on the combinations of weights on the two sites. This method can provide the robust parameter set for the multi-site calibration problems in hydrologic and hydraulic models.

A Study on the Tuning Parameter of Continuous Variable Valve for Reverse Continuous Damper (리버스 무단 댐퍼용 연속가변밸브의 튜닝 파라미터에 관한 연구)

  • 윤영환;최명진;유송민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.192-200
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions for passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed, which is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper that offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

The Factors Influencing Intention to Use Bit Coin of Domestic Consumers (국내 소비자들의 비트코인 사용 의도에 영향을 미치는 요인 연구)

  • Shin, Dong-Hee;Kim, Yong-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.24-41
    • /
    • 2016
  • Study is about Bit Coin that is electronic cash that is received attention globally in recent. It is increasing domestically that uses bit coin for convenience of micro payment, and also bit coin is possible to exchange each countries' currency. In this point, we searched understanding degree and acceptance of bit coin. Also we applied transformed TAM(Technology Acceptance Model) to search factors that have an effect on consumers' intention to use it. In advance, we analyze features of bit coin, and extract factors through preceding researches for existing electronic cash, because studies for intention to use bit coin are weak in internal and external. First of results is that 'economic efficiency' which is a characteristic variable of bit coin influences 'intention to use,' a dependent variable through 'perceived usefulness,' a parameter. It was investigated that monetary and mental costs that was costed when we use bit coin were less than using other cash. Secondly, 'payment convenience' that is a characteristic variable affects 'intention to use', a dependent variable through 'perceived usefulness,' a parameter. It was measured that problems of inconvenience that include transaction process, cash management time shortage and exchange changes will be solved by using bit coin. Thirdly, 'reliability' that is a perceived risk variable of bit coin has a direct effect on 'intention to use,' a dependent variable. It was investigated that we could achieve purpose of payment because we weren't influenced by breakdown on system by processing distributed database in some computers. Fourthly, 'perceived usefulness,' a parameter of bit coin directly affects 'intention to use,' a dependent variable. Then consumers who want to use bit coin are fascinated bit coin for various usability. Moreover, we want to provide implications to all of finance corporations, companies related electronic cash and bit coin users based on these results.