• Title/Summary/Keyword: variable control

Search Result 4,762, Processing Time 0.035 seconds

Design of Self-Repairing Suspension Systems via Variable Structure Control Scheme (가변구조 제어기법을 이용한 고장허용 현가장치 설계)

  • 김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.922-927
    • /
    • 2002
  • A variable structure control (VSC) based model following control system that possesses fault detection and isolation (FDI) capability as well as fault tolerance property is proposed. The nonlinear part of the proposed control law. whose magnitude is determined by sliding variables, plays the role of suppressing fault effect. Thus, approximate fault reconstruction is also possible via the analysis of sliding variables. The proposed algorithm is applied to an active suspension system of pound vehicles to verify its applicability.

A Study on the Variable -Structure Control Using New Switching Variables (새로운 스위칭 변수를 이용한 가변구조제어에 관한 연구)

  • 이주장;이흥규;이병일
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1586-1593
    • /
    • 1988
  • A new control scheme for the variable-structure control system using new time-varying switching variable is presented in this paper. It is proposed to have new algorithm for reducing the reaching time on a switching hyperplane by modifying the Morgan's algorithm. From the results of the simulation, it is concluded the proposed control algorithm yields smaller control inputs (without disturbance) and ripples (with disturbance) than that obtained by Morgan's algorithm in the steady-state. This control algorithm can be applied to proper control systems having sensitive effects on disturbances, due to the robustness.

  • PDF

A VSR $\bar{X}$ Chart with Multi-state VSS and 2-state VSI Scheme

  • Lee, Jae-Heon;Park, Chang-Soon
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.252-264
    • /
    • 2004
  • Variable sampling Interval (VSI) control charts vary the sampling interval according to value of the control statistic while the sample size is fixed. It is known that control charts with 2-state VSI scheme, which uses only two sampling intervals, give good statistical properties. Variable sample size (VSS) control charts vary the sample size according to value of the control statistic while the sampling interval is fixed. In the VSS scheme no optimal results are known for the number of sample sizes. It is also known that the variable sampling rate (VSR) $\bar{X}$ control chart with 2-state VSS and 2-state VSI scheme leads to large improvements In performance over the fixed sampling rate (FSR) $\bar{X}$ chart, but the optimal number of states for sample size Is not known. In this paper, the VSR Χ charts with multi-state VSS and 2-state VSI scheme are designed and compared to 2-state VSS and 2-state VSI scheme. The multi-state VSS scheme is considered to, achieve an additional improvement by switching from the 2-state VSS scheme. On the other hand, the multi-state VSI scheme is not considered because the 2-state scheme is known to be optimal. The 3-state VSS scheme improves substantially the sensitivity of the $\bar{X}$ chart especially for small and moderate mean shifts.

Design of Variable Gain Amplifier with a Gain Slope Controller in Multi-standard System (다중 표준 시스템을 위한 이득 곡선 제어기를 가진 가변이득 증폭기 설계)

  • Choi, Moon-Ho;Lee, Won-Young;Kim, Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.321-328
    • /
    • 2008
  • In this paper, variable gain amplifier(VGA) with a gain slope controller has been proposed and verified by circuit simulations and measurements. The proposed VGA has a gain control, gain slope switch and variable gain range. The input source coupled pair with diode connected load is used for VGA gain stage. The gain slope controller with switch can control VGA gain slope. The proposed VGA is fabricated in $0.18{\mu}m$ CMOS process for multi -standard wireless receiver. The proposed two stage VGA consumes min. 2.0 mW to max. 2.6 mW in gain control range and gives input IP3 of -3.77 dBm and NF of 28.7 dB at 1.8 V power supply under -25 dBm, 1 MHz input. The proposed VGA has 37 dB(-16 dB $\sim$ 21 dB) variable gain range, and 8 dB gain range control per 0.3 V control voltage, and can provide variable gain, positive and negative gain slope control, and gain range control. This VGA characteristics provide design flexibility in multi-standard wireless receiver.

EWMA Control Charts with Variable Parameter (가변모수를 갖는 EWMA 관리도)

  • Lee, Jae-Heon;Han, Jung-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.4
    • /
    • pp.117-122
    • /
    • 2005
  • Variable sampling rate(VSR) scheme varies the sampling rate for the current sample depending on the previous value of the control statistic. In this paper, we propose EWMA control charts with variable parameter(VP) scheme, which allows both the sample rate(the sample size or the sampling interval) and the weight to vary. We investigate the effectiveness of the VP scheme relative to the fixed parameter(FP) scheme and the VSR scheme in EWMA control charts. It is shown that using the VP scheme gives some improvements to the ability in detecting small and moderate shifts in the process normal mean.

An Electrohydraulic Position Servo Control Systems Using the Optimal Feedforward Integral Variable Structure Controller

  • Phakamach, Phongsak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.936-941
    • /
    • 2004
  • An Optimal Feedforward Integral Variable Structure or FIVSC approach for an electrohydraulic position servo control system is presented in this paper. The FIVSC algorithm combines feedforward strategy and integral in the conventional Variable Structure Control (VSC) and calculating the control function to guarantee the existence of a sliding mode. Furthermore, the chattering in the control signal is suppressed by replacing the sign function in the control function with a smoothing function. The simulation results illustrate that the purposed approach gives a significant improvement on the tracking performances when compared with some existing control methods, like the IVSC and MIVSC strategies. Simulation results illustrate that the purposed approach can achieve a zero steady state error for ramp input and has an optimal motion with respect to a quadratic performance index. Moreover, Its can achieve accurate servo tracking in the presence of plant parameter variation and external load disturbances.

  • PDF

Fuzzy Variable Structure Control System for Fuel Injected Automotive Engines (연료분사식 자동차엔진의 퍼지가변구조 제어시스템)

  • Nam, Sae-Kyu;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1813-1822
    • /
    • 1993
  • An algorithm of fuzzy variable structrue control is proposed to design a closed loop fuel-injection system for the emission control of automotive gasoline engines. Fuzzy control is combined with sliding control at the switching boundary layer to improve the chattering of the stoichiometric air to fuel ratio. Multi-staged fuzzy rules are introduced to improve the adaptiveness of control system for the various operating conditions of engines, and a simplified technique of fuzzy inference is also adopted to improve the computational efficiency based on nonfuzzy micro-processors. The proposed method provides an effective way of engine controller design due to its hybrid structure satisfying the requirements of robustness and stability. The great potential of the fuzzy variable structure control is shown through a hardware-testing with an Intel 80C186 processor for controller and a typical engine-only model on an AD-100 computer.

Performance Improvement of a Grid-Connected Inverter System using a Sliding-Mode Based Direct Power Control with a Variable Gain (슬라이딩 모드 기반의 가변이득을 가지는 직접전력제어를 이용한 계통연계형 인버터의 성능개선)

  • Lee, Byoung-Seoup;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.57-66
    • /
    • 2012
  • This paper proposes a performance improvement of grid-connected inverter system using sliding-mode based direct power control with a variable gain. The proposed control method determine variable gain of PI controller by using modeling at direct power control (DPC) applied to space vector modulation method. Also, this method use sliding-mode control to maintain excellent dynamic response of character of direct power control (DPC). The validity of the proposed algorithm are verified by simulations and experiments.

Mortion Control of DC Servo System Using Variable Structure Control (가변구조제어를 응용한 직류서보 제어계의 위치제어에 관한 연구)

  • Hong, S.I.;Bae, G.H.;Song, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.742-744
    • /
    • 1995
  • In position control system using variable structure control, the velocity of control object is controlled to approach the desired specified velocity patterns, and eventually the position of control object is correctly at reference position. Here, this intention can be success by means of variable structure control. In this paper, the PI velocity feedback control is also used sliding mode controller. The design of position controller under specified velocity profiles in variable structure control's constraints is studied.

  • PDF

Development of a Tying-Unit Controller for a Variable Chamber Round Baler (가변 원형 베일러의 결속 기구 제어 장치 개발)

  • 김종언;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.341-350
    • /
    • 2000
  • This study was conducted to develop a control unit for a tying device of a variable chamber round baler. The work process of the tying device was thoroughly analyzed and the control sequence was established according to the work process. Based on this control sequence, a control unit using an 8 bit microprocessor AT 89C52 as a CPU was developed. The driving circuit to control the actuator motion was developed and the PWM method was used to regulate the velocity of the actuator. On the front panel of the control unit, indicators were also installed to show the operations being conducted. A prototype of the developed control unit was manufactured and tested. A total of 50 complete cycles of the control sequence was repeated and no failure was observed. It was evaluated that the developed control unit has an excellent performance and can be used practically for variable chamber round balers.

  • PDF