• Title/Summary/Keyword: variable concentric method

Search Result 6, Processing Time 0.75 seconds

A study on the Minimum-Time Path Decision of a Soccer Robot using the Variable Concentric Circle Method (가변 동심원 도법을 이용한 축구로봇의 최단시간 경로설정에 관한 연구)

  • Lee, Dong-Wook;Lee, Gui-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.142-150
    • /
    • 2002
  • This study describes a method of finding an optimal path of a soccer robot by using a concentric circle method with different radii of rotation. Comparing with conventional algorithms which try to find the shortest path length, the variable concentric circle method find the shortest moving time. The radius fur the shortest moving time for a given ball location depends on the relative location between a shooting robot and a ball. Practically it is difficult to find an analytical solution due to many unknowns. Assuming a radius of rotation within a possible range, total path moving time can be calculated by adding the times needed for straight path and circular path. Among these times the shortest time is obtained. In this paper, a graphical solution is presented such that the game ground is divided into 3 regions with a minimum, medium, and maximum radius of rotation.

Electric Field Analysis Using Three Dimensional Boundary Integral Equation Method (3차원 경계적분방정식법을 이용한 정전장 해석)

  • Kim, Jae-Hong;Kim, Dong-Hun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.828-830
    • /
    • 2000
  • This paper describes BIEM(Boundary Integral Equation Method) for computation of three dimensional electric field distribution and numerical method that an equivalent charge density is unknown variable. After computing numerically the surface charge distribution. the distribution of both potential and electric field are obtained. Finally, this numerical method is applied to the concentric sphere and the coaxial cylindrical model and numerical result is compared to the analytic solution.

  • PDF

Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.457-466
    • /
    • 2003
  • In this paper, the numerical finite element formulations were derived for the linearized Navier-Stokes' equations with assumptions of two-dimensional incompressible, homogeneous viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code was developed for practical applications calculating the fluid added mass and damping. In formulations, a fluid domain is discretized with C$\^$0/-type quadratic quadrilateral elements containing eight nodes using a mixed interpolation method, i.e., the interpolation function for the velocity variable is approximated by a quadratic function based on all eight nodal points and the interpolation function for the pressure variable is approximated by a linear function based on the four nodal points at vertices. Using the developed code, the various characteristics of the fluid added mass and damping are investigated for the concentric cylindrical shell and the actual hexagon arrays of the liquid metal reactor cores.

Physical Therapy Intervention for High School Baseball Players with Internal Impingement Syndrome : Comparison of the effects of eccentric training and concentric training (내부 충돌증후군을 가진 고등학교 야구선수들을 위한 물리치료적 중재법 : 편심성 훈련과 동심성 훈련의 효과 비교)

  • Choo, Yeon-Ki;Kim, Hyeon-Su;Lee, Keon-Cheol
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.4
    • /
    • pp.219-228
    • /
    • 2022
  • Purpose : The purpose of this study was to suggest a more effective method by comparing the effects of changes in pain intensity, muscle strength, and athletic performance after applying a 6-week eccentric training program (ET-MWM) or concentric training program (CT-MWM) with MWM for high school baseball players with shoulder internal impingement (SII). Methods : A total of 75 participants were randomly assigned to each group and divided into two groups, "ET-MWM group (n=35)" and "CT-MWM group (n=32)" according to the intervention method. Pain intensity, muscle strength (external rotation, internal rotation), and athletic performance were first measured before the intervention, and after the intervention 3 times a week for a total of 6 weeks, both groups were re-measured in the same way. Visual analog scale (VAS) was used for pain intensity, biodex dynamometer for muscle strength (60 °/sec.), and Kerlan-Jobe orthopedic clinic shoulder & elbow score (K-KJOC) for athletic performance. Results : As a result of analyzing the homogeneity of the pre-intervention characteristics and initial measurement variables of the study subjects, there was no significant difference between the two groups in all variable values. Pain intensity (VAS) was significantly reduced in the ET-MWM group than in the CT-MWM group (p<.05). In addition, the maximum muscle strength of external rotation & internal rotation of the shoulder (60 °/sec.) and athletic performance (K-KJOC) were significantly increased in the ET-MWM group than in the CT-MWM group (p<.05). Conclusion : Compared with the CT-MWM training program, the ET-MWM training program reduced shoulder joint pain and further increased the muscle strength required for throwing motion in high school baseball players. As the result showed better athletic performance improvement, the ET-MWM training program can be clinically recommended as a more effective intervention.

Nonlinear free vibration of heated corrugated annular plates with a centric rigid mass

  • Wang, Yong-Gang;Li, Dan;Feng, Ze-Jun
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.491-505
    • /
    • 2010
  • A computational analysis of the nonlinear free vibration of corrugated annular plates with shallow sinusoidal corrugations under uniformly static ambient temperature is examined. The governing equations based on Hamilton's principle and nonlinear bending theory of thin shallow shell are established for a corrugated plate with a concentric rigid mass at the center and rotational springs at the outer edges. A simple harmonic function in time is assumed and the time variable is eliminated from partial differential governing equations using the Kantorovich averaging procedure. The resulting ordinary equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved numerically by shooting method, and the temperature-dependent characteristic relations of frequency vs. amplitude for nonlinear vibration of heated corrugated annular plates are obtained. Several numerical results are presented in both tabular and graphical forms, which demonstrate the accuracy of present method and illustrate the amplitude frequency dependence for the plate under such parameters as ambient temperature, plate geometry, rigid mass and elastic constrain.

Dynamic Electromyography Analysis of Shoulder Muscles for One-handed Manual Material Handling

  • Mo, Seung-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.313-326
    • /
    • 2015
  • Objective: The objective of this research is to quantitatively analyze muscle activities of arm and shoulder, according to direction in various types of one-handed manual material handling, based on surface electromyography. Background: Workers in industrial sites frequently carry out one-handed manual material handling using arm and shoulder muscles. Therefore, chronic load and accumulated fatigue occur to arm and shoulder muscles, which becomes a main cause of upper arm and shoulder musculoskeletal disorders. The shoulder muscles have widely range of motion, and complex interactions take place among various muscles including rotator cuff muscles. In this regard, research on interactions among should muscles, according to such various dynamic motions, is required. Method: Ten male subjects in their 20s participated in this research. This research considered upward, downward, leftward, rightward, forward and backward directions and fourteen muscles around arm and shoulder (biceps brachii and trapezius, etc.) as independent variables. The mean muscle activity was set as the dependent variable. This research extracted $4^{th}{\sim}7^{th}$ repetition signals according to ten times of repetitive muscle contraction, and analyzed the muscle activity concerned using the envelope detection technique. Results: The mean muscle activity of upward direction was analyzed highly statistically significant. The reason is that the effect of gravity works to arm and shoulder muscles. Also, it is conjectured that deformation of coracoacromial ligament was caused, and its contact pressure increased, due mainly to the shoulder flexion, and therefore load was analyzed high. Muscle activity was analyzed significantly low, according to concentric ballistic motion used in the concentric contraction phase by storing elastic energy in the eccentric contraction phase with a motion to bring the weight to the front of subject's body as to downward, leftward and backward directions. Because, elbow joint's flexion-extension motions mainly occurred, biceps brachii was analyzed high muscle activity as the prime mover. Conclusion: The information on the quantitative load of muscles can be applied to ergonomic work design for one-handed manual material handling to minimize muscle load. Application: This research has effectively identified muscle activity according to dynamic contraction by applying an envelope detection technique. The results can be used for ergonomic work design to minimize muscle load during the one-handed manual material handling, according to each direction. The research results are expected to be used for musculoskeletal disorder prevention and physiotherapy in the rehabilitation medical field, based on the muscle load of arm and shoulder in various directions.