• Title/Summary/Keyword: var compensator

Search Result 139, Processing Time 0.028 seconds

A Study on the Static Var Compensator Application for the train garage in Korean National Railroad: Analysis of Harmonic Generation of SVC (전동차 사무소의 SVC 적용에 따른 고조파 발생에 관한 연구)

  • Lee, Seung-Hyuk;Lee, Jun-Kyong;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • AC electric railroad system receives its power from 3-phase transmission system, Since, trainloads are changing continuously, the voltages for the single-phase load fluctuate in the train garage, and moreover, the fluctuating voltages generate high-order harmonics. This means that there is the difficulty in maintaining power quality in the power system. Therefore, a Static Var Compensator(SVC), which in general compensates the reactive power, is used in order to balance the trainload. In this paper, PSCAD/EMTDC is used for the analysis of harmonic generation in the train garage using SVC. The Total Harmonic Distortion(THD) of voltages is calculated using PSCAD/EMTDC dynamic simulation. As a result, the train garage using SVC improves power quality.

GA based Selection Method of Weighting Matrices in LQ Controller for SVC (GA를 이용한 SVC용 LQ 제어기의 가중행렬 선정 기법)

  • 허동렬;이정필;주석민;정형환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.40-50
    • /
    • 2002
  • In this paper, we present a GA(Genetic Algorithm) approach to select weighting matrices of an optimal LQ(Linear Quadratic) controller for SVC(Static VAR Compensator). A SVC, one of the FACTS(Flexible AC Transmission System), constructed by a FC(Fixed Capacitor) and a TCR(Thyristor Controlled Reactor), was designed and implemented to improve the damping of a synchronous generator, as well as to control the system voltage Also, a design of LQ controller depends on choosing weighting matrices. The selection of weighting matrices which is not a trivial solution is usually carried out by trial and error. We proposed an efficient method using GA of finding weighting matrices for optimal control law. Thus, we proved the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system by eigenvalues analysis and simulation.

Available Transfer Capability Enhancement with FACTS Devices in the Deregulated Electricity Market

  • Manikandan, B.V.;Raja, S. Charles;Venkatesh, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In order to facilitate the electricity market operation and trade in the restructured environment, ample transmission capability should be provided to satisfy the demand of increasing power transactions. The conflict of this requirement and the restrictions on the transmission expansion in the restructured electricity market has motivated the development of methodologies to enhance the available transfer capability (ATC) of existing transmission grids. The insertion of flexible AC transmission System (FACTS) devices in electrical systems seems to be a promising strategy to enhance single area ATC and multi-area ATC. In this paper, the viability and technical merits of boosting single area ATC and multi-area ATC using Thyristor controlled series compensator (TCSC), static VAR compensator (SVC) and unified power flow controller (UPFC) in single device and multi-type three similar and different device combinations are analyzed. Particle swarm optimization (PSO) algorithm is employed to obtain the optimal settings of FACTS devices. The installation cost is also calculated. The study has been carried out on IEEE 30 bus and IEEE 118 bus systems for the selected bilateral, multilateral and area wise transactions.

Maximization of Transmission System Loadability with Optimal FACTS Installation Strategy

  • Chang, Ya-Chin;Chang, Rung-Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.991-1001
    • /
    • 2013
  • Instead of building new substations or transmission lines, proper installation of flexible AC transmission systems (FACTS) devices can make the transmission networks accommodate more power transfers with less expansion cost. In this paper, the problem to maximize power system loadability by optimally installing two types of FACTS devices, namely static var compensator (SVC) and thyristor controlled series compensator (TCSC), is formulated as a mixed discrete-continuous nonlinear optimization problem (MDCP). To reduce the complexity of the problem, the locations suitable for SVC and TCSC installations are first investigated with tangent vector technique and real power flow performance index (PI) sensitivity factor and, with the specified locations for SVC and TCSC installations, a set of schemes is formed. For each scheme with the specific locations for SVC and TCSC installations, the MDCP is reduced to a continuous nonlinear optimization problem and the computing efficiency can be largely improved. Finally, to cope with the technical and economic concerns simultaneously, the scheme with the biggest utilization index value is recommended. The IEEE-14 bus system and a practical power system are used to validate the proposed method.

Reactive Power Compensator for Pulsed Power Electric Network of International Thermonuclear Experimental Reactor (국제 열핵융합실험로 펄스전원계통의 무효전력보상기 검증)

  • Jo, Hyunsik;Jo, Jongmin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.290-295
    • /
    • 2015
  • Analysis and verification of reactive power compensator (RPC) for ITER pulsed power electric network (PPEN) are described in this paper. The RPC system is rated for a nominal power of 250 Mvar necessary to comply with the allowable reactive power limit value from the grid 200 Mvar. This system is currently under construction and is based on static var compensation technology with a thyristor-controlled reactor and a harmonic filter. The RPC minimizes reactive power from grid using prediction of reactive power consumption of AC-DC converters. The feasibility of the reactive power compensation was verified by assembling a real controller and implementing ITER PPEN in the real time digital simulator for the hardware-in-loop facility. When maximum reactive power is reached, grid voltage is stabilized and maximum reactive power decreased from 120 Mvar to 40 Mvar via the reactive power prediction method.

Sliding Mode Control of a New Wind-Based Isolated Three-Phase Induction Generator System with Constant Frequency and Adjustable Output Voltage

  • Moradian, Mohammadreza;Soltani, Jafar
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.675-684
    • /
    • 2016
  • This paper presents a new stand-alone wind-based induction generator system with constant frequency and adjustable output voltage. The proposed generator consists of a six-phase cage-rotor induction machine with two separate three-phase balanced stator windings and a three-phase space vector pulse width modulation inverter that operates as a static synchronous compensator (STATCOM). The first stator winding is fed by the STATCOM and used to excite the machine while the second stator winding is connected to the generator external load. The main frequency of the STATCOM is determined to be constant and equal to the load-requested frequency. The generator output frequency is independent of the load power demand and its prime mover speed because the frequency of the induced emf in the second stator winding is the same as this constant frequency. A sliding mode control (SMC) is developed to regulate the generator output voltage. A second SMC is used to force the zero active power exchanged between the machine and the STATCOM. Some simulation and experimental results are presented to prove the validity and effectiveness of the proposed generator system.

Analysis of Flicker Mitigation Effects using IEC Digital Flickermeter based on Matlab/Simulink Simulation (Matlab/Simulink 기반의 IEC 플리커미터를 이용한 플리커 저감효과 모의에 대한 연구)

  • Jung, Jae-Ahn;Cho, Soo-Hwan;Kwon, Sae-Hyuk;Jang, Gil-Soo;Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.232-238
    • /
    • 2009
  • Flicker, also known as voltage fluctuation, is a newest problem of power quality issues, because it is caused by nonlinear loads such as electrical arc furnace and large-scale induction motor, which are country-widely used as the heavy industries of a country develop. An international standard, International Electrotechnical Commission (IEC) 61000-4-15, was published in 1997 and revised in 2003. With increasing concerns about flicker, its mitigation methods have been also studied. General countermeasures for flicker are divided into three categories: a) enhancing the capacity of supplying system, b) Series elements including series reactor and series capacitor and c) power electronic devices including static VAR compensator (SVC) and static synchronous compensator (STATCOM). This paper introduces how to mitigate the voltage flicker at the point of common coupling (PCC) and presents how to simulate and compare the flicker alleviating effects by each mitigation method, using IEC flickermeter based on the Matlab/Simulink program.

A Study on Unbalance Compensation Using SVC in Electric Railway Feeding System (전기철도 급전시스템에서 SVC를 이용한 전압불평형 보상에 관한 연구)

  • Son, Guk-Hyun;Choi, Kyu-Hyoung;Kim, Sung-Il;Jung, Ho-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3124-3132
    • /
    • 2011
  • Scott transformers have widely used to convert three phases into two phases and compensate the unbalance. Theoretically, the loads of the two secondary phases are same, no unbalance appears in the PCC(point of common coupling). But Due to the uncertainty of traction load, the unbalance are generally presented at the PCC. In this paper The amount of the voltage unbalance is expressed in the ratio of the negative sequence voltages to the positive sequence voltage. We tried to compensate the unbalance using SVC(Static Var Compensator)in an unbalance traction loads state by modeling. The SVC are installed and controlled to provide different amounts of reactive power compensation.

  • PDF

PSSs and SVC Damping Controllers Design to Mitigate Low Frequency Oscillations Problem in a Multi-machine Power System

  • Darabian, Mohsen;Jalilvand, Abolfazl
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1873-1881
    • /
    • 2014
  • This paper deals with the design of multi-machine power system stabilizers (PSSs) and Static var compensator (SVC) using Modified shuffled frog leaping algorithm (MSFLA). The effectiveness of the proposed scheme for optimal setting of the PSSs and SVC controllers has been attended. The PSSs and SVC controllers designing is converted to an optimization problem in which the speed deviations between generators are involved. In order to compare the capability of PSS and SVC, they are designed independently once, and in a coordinated mode once again. The proposed method is applied on a multi-machine power system under different operating conditions and disturbances to confirm the effectiveness of it. The results of tuned PSS controller based on MSFLA (MSFLAPSS) and tuned SVC controller based on MSFLA (MSFLA SVC) are compared with the Strength pareto evolutionary algorithm (SPEA) and Particle swarm optimization (PSO) based optimized PSS and SVC through some performance to reveal its strong performance.

Coordination of SVC and External Reactor/Capacitor Banks Using Multi-objective (다목적 유전자 알고리즘을 이용한 SVC와 외부 리액터/커패시터 뱅크의 헙조 제어)

  • Park, Jong-Young;Lee, Sang-Ho;Park, Jong-Keun;Son, Kwang-Myoung;Lee, Song-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.233-235
    • /
    • 2000
  • SVC(Static Var Compensator) is commonly installed with conventional mechanically switched existing reactor or capacitor banks for wide range voltage control. The frequencies of switching of external banks have a great impact on the quality of voltage, but is limited since the life time of the external banks depends severely on the number of switching. So it is a complete multi-objective nonlinear optimization problem with conflicting objectives. This paper presents a method to determine the optimal coordination of SVC and external banks using genetic algorithm based on the multi-objective criteria. Optimal dead band and delay time of external banks is sought for reliable and efficient operation

  • PDF