• Title/Summary/Keyword: vaporization characteristics

Search Result 132, Processing Time 0.027 seconds

Spray Structures and Vaporizing Characteristics of a GDI Fuel Spray

  • Park, Dong-Seok;Park, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.999-1008
    • /
    • 2002
  • The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced Exciplex Fluorescence (LIEF) technique. Dopants were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to study internal structure of the spray, droplet size and velocity under non-evaporating condition were measured by Phase Doppler Anemometry (PDA). Liquid and vapor phases were visualized at different moments after the start of injection. Experimental results showed that the spray could be divided into two regions by the fluorescence intensity of liquid phase: cone and mixing regions. Moreover, vortex flow of vapor phase was found in the mixing region. About 5㎛ diameter droplets were mostly distributed in the vortex flow region. Higher concentration of vapor phase due to vaporization of these droplets was distributed in this region. Particularly, higher concentration of vapor phase and lower one were balanced within the measurement area at 2ms after the start of injection.

The Effects of Droplets Arrangement and Size Difference on the Vaporization and Combustion Characteristics of Liquid Fuel Droplets (액체 연료 액적들의 배열 및 크기차이가 증발 및 연소특성에 미치는 영향)

  • Lee, Dong-Jo;Kim, Ho-Young;Cho, Chong-Pyo;Yoon, Suk-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.107-113
    • /
    • 2007
  • The burning characteristics of interacting droplets with internal circulation in a convective flow are numerically investigated at various particle arrangement and size difference. In this simulation some conditions are fixed, surround gas temperature is 1250K, pressure is 10 atm and drolet's initial temperature is 300K. The transient combustion of arranged droplets, the fixed droplet distances of 4 radii to 20 radii horizontally, is studied. And the range of size of droplet is 75${\mu}m$ to 100${\mu}m$. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of droplet internal motion with the horizontal spacing substantially influence lifetime of interacting droplets. At a Reynolds number 10, lifetime of the three droplets with decreasing horizontal droplet spacing increases monotonically. But when droplet spacing decreases further to 4radii, Lifetime of interacting droplets are increase. So Lifetime of interacting droplets exhibits a strong dependence on the horizontal droplet spacing and size difference. It can be investigated well with these conditions to that of single burning droplet.

  • PDF

EAF Dust Recycling Technology in Japan

  • Sasamoto, Hirohiko;Furukawa, Takeshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.9-18
    • /
    • 2001
  • 1. EAF Dust in Japan - Generation and Characteristics. The quantity of dust generated from EAF shops in Japan was estimated to be 520,000 tons/year in 1999. Extremely fine dust (or fume) is formed in the EAF by metal vaporization. Its characteristics such as chemical compositions, phases, particle size, leaching of heavy metal are mentioned. 2. EAF Dust Treatment Methods in Japan. In 1999, 61% of EAF dust was treated by regional zinc recovery processing routes, 25% went to landfill disposal, 4% was reused as cement material, and 10% was treated by on-site processing routes. The problems of EAF dust treatment methods in Japan are: (1) very high treatment cost, and (2) heavy environmental load (leaching of heavy metal, emission of dioxins, depletion of disposal sites, etc). It has been much hoped for that new dust management technology would be developed. 3. New technology of EAF dust treatment in Japan. In Japan, some new technologies of EAF dust treatment have been developed, and some others are in the developing stages. Following five processes are mentioned:. (1) Smelting reduction process by Kawasaki Steel, (2) DSM process by Daido Steel, (3) VHR process by Aichi Steel, (4) On-site dust direct recycling technology, and (5) Process technology of direct separation and recovery of iron and zinc metals contained in high temperature EAF off gas by the Japan Research and Development Center fur Metals.

  • PDF

Prediction of Diesel Fuel Spray Characteristics in Compression Ignition Engine Cylinder by Intake Humidification (흡기 가습에 의한 압축 착화엔진 실린더 내 디젤 연료 분무 특성 예측)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • The objective of this study is to predict numerically the effect of intake humidification on the injected diesel fuel spray characteristics in a compression ignition engine. In this work, Wave model and Ducowicz model were applied as the break-up model and evaporation model, respectively. The amount of water vapor for the humidification was changed from 0% to 30% of injected fuel mass. The number of applied meshes was generated from 49,000 to 110,000. At the same time, the results of this work were compared in terms of spray tip penetration, SMD and equivalence ratio distributions. It was found that the cylinder temperature and cylinder pressure were decreased with increasing water vapor mass by vaporization latent heat and specific heat, however, the difference was very small. So, the spray tip penetration was not different by water vapor mass. Also, higher equivalence ratio distributions were observed with increasing water vapor mass by the improvement of fuel atomization.

Spray and Combustion Characteristics of Diesel and JP-8 in a Heavy-Duty Diesel Engine Equipped with Common-Rail Fuel Injection System (커먼레일을 장착한 대형 디젤엔진에서 디젤과 JP-8의 분무 및 연소특성 평가)

  • Jeon, Jin-Woog;Lee, Jin-Woo;Park, Jung-Seo;Bae, Choong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3019-3025
    • /
    • 2008
  • An experimental study was performed to assess the effect of diesel and JP-8 aviation fuel on the spray characteristics, performance and emissions in a single cylinder optical diesel engine. Both fuels were injected via an 8-hole solenoid-driven injector in a common-rail injection system. For better understanding of spray development, the macroscopic images were captured with high speed camera, offered evidences for the results of performance and emissions. From macroscopic spray images, the spray tip penetration of JP-8 shorter than that of diesel while spray angle of JP-8 was wider than that of diesel. It indicates that the vaporization of JP-8 is superior to that of diesel. The lower cetane number of JP-8 resulted in increased portion of premixed combustion. The IMEP with JP-8 is lower than that of diesel-fueled engine. Especially, using JP-8 has a potential for reducing soot.

  • PDF

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends (압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구)

  • JAESUNG KWON;BEOMSOO KIM;JEONGHYEON YANG
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature (직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구)

  • Lee, Seangwook;Park, Giyoung;Kim, Jongmin;Park, Bongkyu
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.

An experimental study on the injection and spray characteristics of butanol (부탄올의 분사 및 분무특성에 관한 실험적 연구)

  • JEONG, Tak-Su;WANG, Woo-Gyeong;KIM, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.89-97
    • /
    • 2017
  • Butanol has an ability to improve the ignition quality due to its lower latent heat of vaporization; it has an advantage to reduce a volume of a fuel tank because its energy density is higher than that of ethanol. Also, butanol-diesel oil blending quality is good because butanol has an effect to prevent the phase-separation between two fuels. Even if the blended oil contains water, it can reduce the corrosion of the fuel line. Thus, it is possible to use butanol-diesel oil blended fuel in diesel engine without modification, and it may reduce the environment pollution due to NOx and particulate and the consumption of diesel oil. Therefore, some studies are being advanced whether butanol is adequate as an alternative fuel for diesel engines, and the results of the combustion and exhaust gas emission characteristics are being presented. Though the injection and spray characteristics of butanol are more important in diesel combustion, the has not yet dealt with the matter. In this study, the influence in which differences of physical properties between butanol and diesel oil may affect the injection and spray characteristics such as injection rate, penetration, spray cone angle, spray velocity and process of spray development were examined by using CRDI system, injection rate measuring device and spray visualization system. The results exhibited that the injection and macroscopic spray characteristics of two fuels were nearly the same.

LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection (분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성)

  • Jung, Jinyoung;Oh, Heechang;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

Liquid phase hydrogen peroxide decomposition for micro-propulsion applications

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.21-35
    • /
    • 2017
  • Hydrogen peroxide is being considered as a monopropellant in micropropulsion systems for the next generation of miniaturized satellites ('nanosats') due to its high energy density, modest specific impulse and green characteristics. Efforts at the University of Vermont have focused on the development of a MEMS-based microthruster that uses a novel slug flow monopropellant injection scheme to generate thrust and impulse-bits commensurate with the intended micropropulsion application. The present study is a computational effort to investigate the initial decomposition of the monopropellant as it enters the catalytic chamber, and to compare the impact of the monopropellant injection scheme on decomposition performance. Two-dimensional numerical studies of the monopropellant in microchannel geometries have been developed and used to characterize the performance of the monopropellant before vaporization occurs. The results of these studies show that monopropellant in the lamellar flow regime, which lacks a non-diffusive mixing mechanism, does not decompose at a rate that is suitable for the microthruster dimensions. In contrast, monopropellant in the slug flow regime decomposes 57% faster than lamellar flow for a given length, indicating that the monopropellant injection scheme has potential benefits for the performance of the microthruster.