• Title/Summary/Keyword: vapor phase

Search Result 1,125, Processing Time 0.031 seconds

Thermodynamic Equilibrium Compositions for a $NH_3-AlCl_3-H_2$ Vapor-Phase Reacting System and Synthesis of High-Purity AlN ($NH_3-AlCl_3-H_2$ 기상반응계의 열역학적 평형조성 및 고순도 AIN 합성)

  • 현상훈;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.33-43
    • /
    • 1986
  • The synthesis of high-purity AlN by a vapor-phase reaction was investigated using the $NH_3-AlCl_3-H_2$ reacting system. The theoretical yields of AlN were determined from th thermodynamic equilibrium composi-tions. It was shown that the yields above 90% could by obtained even in the range of relatively low temper-ature of 600-1200K. The reaction temperature and the initial amounts/ratios of the reacting gases showed significant effects on the yields but the total pressure did not. The experimental results showed that a high-purity AlN having a needle shape was the only product as a solid phase and its amount produced increased with the reaction temperature. While the degree of agglmera-tion of the synthesized AlN increased with the reaction temperature the size of each particle consisting of the agglomerates was independent of the temperature but grew from 0.09 to 0.115${\mu}{\textrm}{m}$ with the flow rate of NH3. These experimental results were compared with the theoretical aspects for the synthesis of a high-purity AlN.

  • PDF

Gas-Particle Partitioning of PCBs in Ambient Air, Yokohama Japan (일본 요코하마 대기 중 PCBs의 가스-입자 분배)

  • Kim Kyoung-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.285-293
    • /
    • 2005
  • This study was aimed at estimation of gas-particle partitioning of polychlorinated biphenyls (PCBs) in ambient air. The samples were collected at urban site in Japan from March 2002 to January 2003. The concentration of total PCBs (from 4 CB to 10 CB) and TEQ (Toxic equivalent) ranged from 62 to $247\;pg/m^3$ and from 2 to $14\;fgTEQ/m^3 $, respectively. The average contribution $(\%)$ of gas phase to total PCBs concentration was above $80\%$, which suggests that in the atmosphere PCBs predominantly existed in the gas phase. The weak correlations between total PCBs concentration and temperature was found. However this result was due to a typhoon during summer and raining during sampling period. The gas-particle partition coefficient (Kp) was obtained as a function of temperature. The partition ratio of gaseous and particulate phase PCBs can be estimated for an arbitrary temperature. The plot of gas/particle partition coefficient (log Kp) vs. sub-cooled liquid vapor pressure $(log\;P_L)$ had reasonable correlations for individual samples but the slope varied among the samples (coefficients of determination for log Kp versus log $P_L$ plot were> 0.76 $(p<0.0001)$, except for 3 samples). As a result, the variations in the slope among the sampling period may be due to change of temperature, raining during sampling period and wind in this study.

Synthesis and Analysis of Nanosized TiO2 Particles Using a Tube Furnace (튜브 전기로를 이용한 TiO2 나노입자의 합성 및 특성 분석)

  • 배귀남;현정은;이태규;정종수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.411-419
    • /
    • 2004
  • Titania particles are widely used as a photocatalyst to treat various contaminants in air and water. Titania particles were formed by vapor-phase oxidation of titanium tetraisopropoxide (TTIP) in a tube furnace between 773 and 1,273 K. The effect of process variables such as furnace temperature, flow rate of carrier air, and flow rate of sheath air on powder size and phase characteristics was investigated using a scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size distribution of synthesized titania particles was characterized with mode diameter and peak concentration. The mode diameter ranging from 20 to 80 nm decreased with increasing flow rates of sheath air and carrier air, and increased with increasing furnace temperature. The peak concentration increased with increasing flow rates of sheath air and carrier air The best synthetic condition for high production rate can be derived from the experimental data set represented by mode diameter and peak concentration. The crystal structure of synthesized titania particles was found to be anatase phase, ensuring high photocatalytic potential.

Improving current and luminous efficacy of red phosphorescent Organic Light Emitting Diodes (OLEDs) by introducing graded-layer device designs enabled by Organic Vapor Phase Deposition (OVPD)

  • Schwambera, Markus;Keiper, Dietmar;Meyer, Nico;Heuken, Michael;Lindla, Florian;Bosing, Manuel;Zimmermann, Christoph;Jessen, Frank;Kalisch, Holger;Jansen, Rolf H.;Gemmern, Philipp Van;Bertram, Dietrich
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1140-1143
    • /
    • 2009
  • Organic Vapor Phase Deposition (OVPD) equipment enables the accurate and simultaneous control of deposition rates of multiple materials as well as their homogenous mixing in the gas phase. Graded or even cross-faded layers by varying carrier gas flow are options to improve OLED performances. As example, we will show how the efficacies of standard red phosphorescent OLEDs with sharp interfaces can be increased from 18.8 cd/A and 14.1 lm/W (1,000 cd/$m^2$) to 36.5 cd/A (+94 %, 18 % EQE) and 33.7 lm/W (+139 %) by the introduction of cross-fading, which is a controlled composition variation in the organic film.

  • PDF

Two-Phase Flow Field Simulation of Horizontal Steam Generators

  • Rabiee, Ataollah;Kamalinia, Amir Hossein;Hadad, Kamal
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

Experimental investigation of two-phase natural circulation loop as passive containment cooling system

  • Lim, Sun Taek;Kim, Koung Moon;Kim, Haeseong;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3918-3929
    • /
    • 2021
  • In this study, we experimentally investigate of a two-phase natural circulation loop that functions as a passive containment cooling system (PCCS). The experimental apparatus comprises two loops: a hot loop, for simulating containment under severe accidents, and a natural circulation loop, for simulating the PCCS. The experiment is conducted by controlling the pressure and inlet temperature of the hot loop in the range of 0.59-0.69 MPa (abs) and 119.6-158.8 ℃, respectively. The heat balance of the hot loop is established and compared with a natural circulation loop to assess the thermal reliability of the experimental apparatus, and an additional system is installed to measure the vapor mass flow rate. Furthermore, the thermal-hydraulic characteristics are considered in terms of a temperature, mass flow rate, heat transfer coefficient (HTC), etc. The flow rate of the natural circulation loop is induced primarily by flashing, and a distortion is observed in the local HTC because of the fully develop as well as subcooled boiling. As a result, we present the amount of heat capacity that the PCCS can passively remove according to the experimental conditions and compared the heat transfer performance using Chen's and Dittus-Boelter correlation.

Numerical Analysis of a Plate Type Generator for Ammonia/Water Absorption Refrigerators (암모니아/물 흡수식 냉동기의 판형 재생기의 수치해석)

  • Ji, Je-Hwan;Jeong, Eun-Soo;Jeong, Si-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.304-310
    • /
    • 2001
  • A numerical model which simulates the heat and mass transfer processes within a counter-current plate type generator for ammonia/water absorption refrigerators was developed. Ammonia/water solution flows downward under gravity and ammonia/water vapor generated by flow boiling flows upward. The flow pattern within the generator was assumed to be a bubbly flow, and the liquid and vapor phase were assumed to be saturated. It was shown that the boiling of ammonia occurred mainly in the upper part of the generator. The effects of the generator length, the wall temperature and the mass flow rate of ammonia/water solution into the generator on the generation of ammonia/water vapor were investigated.

  • PDF

High-Pressure Droplet Vaporization with Emphasis on the Vapor-Liquid Equilibrium Calculation (플래쉬 상평형 계산에 의한 고압 액적기화의 수치적 연구)

  • Lee, Kang-Won;Chae, Jong-Won;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.106-118
    • /
    • 2001
  • A rigorous study of single droplet vaporization under quiescent high pressure atmosphere is attempted adopting method of flash evaporation calculation for vapor-liquid equilibrium. Results due to flash method shows excellent agreement with measurement. Also shown is the present model fairly capable of depicting transients of droplet vaporization under high pressure environment, such as ambient gas solubility, property variation, and multicomponent transports. Systematic treatment of these effects with emphasis on vapor-liquid phase equilibrium revealed; conventional treatment for subcritical droplet vaporization, such as $d^2$-law, leads to erroneous prediction of droplet history, augmented gas solubility is significant under supercritical pressure, and vaporization rate proportionally increase with pressure.

  • PDF

The Molecular Orientation of PVDF Organic Thin Film by Vapor Deposition Method (진공증착법을 이용한 PVDF 유기박막의 분자배향)

  • 박수홍;이선우;임응춘;최충석;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.297-300
    • /
    • 1997
  • In this study, The PVDF thin film was fabricated on the one method of dry-process the physical vapor deposition method, applied electric field, and evaporation control in $\beta$-PVDF thin film preparation. A study on the electric-field-phase change of PVDF thin film in physical vapor deposition using the polymer deposition apparatus which are manufactured for oneself. In the analysis of Fourier-Transform Infrared spectra, according to increasing of electric field intensity, the 510$cm^{-1}$ / peak and 1273$cm^{-1}$ / peak which are showed in $\beta$-PVDF increase, on the contrary the 530$cm^{-1}$ / peak and 977$cm^{-1}$ / peak which are showed in $\alpha$-PVDF decrease.

  • PDF

Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure

  • Kim, Tongwoo;Jaal B. Ghandhi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.157-167
    • /
    • 2003
  • The exciplex fluorescence technique with the TMPD (tetamethyl-Ρ-phenylene-diamine) / naphthalene dopant system was applied in a combustion-type constant-volume spray chamber. A detailed set of calibration experiments has been performed in order to quantify the TMPD fluorescence signal. It has been demonstrated that the TMPD fluorescence intensity was directly proportional to concentration, was independent of the chamber pressure, and was not sensitive to quenching by either water vapor or carbon dioxide. Using a dual heated-jet experiment, the temperature dependence of TMPD fluorescence up to 1000 K was measured. The temperature field in the spray images was determined using a simple mixing model, and an iterative solution method was used to determine the concentration and temperature field including the additional effects of the laser sheet extinction. The integrated fuel vapor concentration compared favorably with the measured amount of injected fuel when all of the liquid fuel had evaporated.