• Title/Summary/Keyword: vapor adsorption

Search Result 169, Processing Time 0.027 seconds

Effect of Ambient Temperature on the Distribution of Atmospheric Concentrations of Polycyclic Aromatic Hydrocarbons in the Vapor and Particulate Phases (대기 중 다환방향족탄화수소의 기체-입자상 농도분포에 미치는 주변 온도의 영향)

  • 백성옥;최진수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.117-132
    • /
    • 1998
  • The main purposes of this study are to investigate the distributional characteristics of polycyclic aromatic hydrocarbons (PAH) in the vapor and particulate phases in the ambient atmosphere, and to evaluate the effect of ambient temperature on the vapor-particle partitioning during the sampling period. A total of 64 samples were collected during a period of 1995 to 1996, using a medium-volume sampler with XAD-2 adsorbents and quartz fiber filters. Analyses of PAH were carried out using HPLC with UV and Fluorescence detections. In this study, a significant seasonal variation in the distributions was observed, reflecting the effect of ambient temperature on the vapor-particle partitioning of PAH. The relationship between the vapor-particle distributions of the 3 to 5 rings PAH and ambient temperature is considered to be well described using the Langmuir adsorption concept. The estimated empirical constants for each PAH in the relationship, particularly for the more volatile compounds, were also comparable with results from other studies. However, it is still difficult to accurately estimate the initial vapor-particle distribution of PAH in the ambient air, since it is not known to what extent the trapped vapours originated from the particles laden in the filter by being volatilized or from the air samples initially present in the vapour phase. The distribution factors for volatile PAH with 3 to 4 rings appeared to be comparable with those in the literature. It should be noted, however, that these distribution factors give information only about the distribution of PAH between the two phases under a specific sampling condition, and hence may provide only semi -quantitative information on the vapor-particle distributions in the atmosphere.

  • PDF

Changes of Specific Surface Area of the Steam Exploded Wood (폭쇄처리 목재의 비표면적변화)

  • Yang, Jae-Kyung;Kim, Hyun-Jung;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 1995
  • This paper reports on the changes of equilibrium moisture contents and specific surface areas of Poplar wood(Populus euramericana) for various steam explosion treatments. Equilibrium moisture contents(EMC) and specific surfaces of steam exploded woods were measured under the moisture adsorption course at 25$^{\circ}C$, and compared with those of other materials and wood meals. The EMCs of steam exploded wood meal were 1~5% less in comparison with that of wood meal. In the case of delignified steam exploded wood meal and delignified wood meal, the same tendency was appeared too. But absolute values of EMCs for delignified wood meals were larger than those of the wood meal. For the changes of EMC by the steam exploded conditions, the EMC decreased with the increase of the steam explosion pressure. On the other hand, specific surface areas were calculated from BET plots based on amounts of monomolecular vapor adsorption of various wood meals. Specific surface areas of the wood meal and delignified wood meal were 90~145, 34~90($m^2/g$) respectively, and which were greater in comparison with those of steam exploded wood meals and delignified steam exploded wood meals. From these results, it is considered that the amount of water vapor adsorption was decreased by the increase of the crystallinity, effect of heat treatment, and coating by melted lignin in during the steam explosion.

  • PDF

Adsorptive Separation of Freon by Microwave Irradiation (마이크로파를 이용한 프레온의 흡착분리)

  • 김윤갑;소림오
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • Gas adsorption on adsorbents depends on temperatures and pressures. When these parameters are fixed, the adsorption capability and selectivity can not be changed. If the gas adsorption is controlled by another factor like electromagnetic field, the adsorption and desorption can be managed by much intentional way. The microwave has characteristics to excite particular components such as water without destroying it. In this study, microwave was irradiated to the adsorbent of an NaY zeolite which is almost transparent to microwave. As vapor of 1, 1, 2- trichloro-1, 2, 2-trifluoroethane (CFC-113) and water flowed simultaneously on the zeolite packed in a column at room temperature, only water was adsorbed. The . adsorbed water was removed from the zeolite and then replaced by CFC-113, since the microwave was irradiated. Greater the power of microwave was, more CFC-113 was adsorbed. The water adsorption took place again after a latent period by stopping the microwave irradiation.

  • PDF

Comparison of Surface Characteristics and Adsorption Rate of Benzene Vapor According to Modifications of Activated Carbon (개질에 따른 활성탄의 표면특성과 Benzene 증기의 흡착속도 비교)

  • Lee, Song-Woo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.919-924
    • /
    • 2008
  • The surface properties and adsorption rates of activated carbon modified with acid and base were compared. The distribution ratio of C and C-H on the surface of activated carbon were decreased by modification with acid and base, but the distribution ratio of C-O, C=O, and O=C-O were increased. Base modification damaged the surface of activated carbon more than acid modification, it caused the effect of 6 percent increments of surface area. Adsorption rate model was more suitable to second order equation than first order equation. Adsorption rate was controlled by adsorption in pore better than in surface.

Adsorption Equilibria of Organic Solvent in an Activated Carbon Fixed Bed (활성탄 고정층에 있어서 유기용제의 흡착평형)

  • Kim, Jung-Geul;Park, Young-Hae;Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2005
  • Adsorption equilibrium data of pure solvent vapors (n-Hexane, Toluene, MEK) as well as their binary mixtures on activated carbon (sorbonorit $B_4$) were experimentally determined in the range of 293.2~323.2 K and beyond saturated vapor pressure corresponding to experimental temperature. Langmuir, Freundlich, LRC, W-VSM, FH-VSM were estimated for the predication of single component as well as binary mixtuer systems. The isosteric heat of adsorption at infinite dilution of pure n-hexane, toluene, MEK on activated carbon were 45.18, 25.85, 34.62 Kcal/mol, respectively, also, n-hexane-toluene binary adsorption of activated carbon formed an azeotrope at 293.2 K and total pressure 5.1~10.3 mmHg.

  • PDF

Study of Effect of Adsorbate-Adsorbent Interaction in Multilylayer Physical Adsorption of Gases on Solids

  • Park, Sung-Ju;Lee, Jo W.;Pak, Hyung-Suk;Chang, Sei-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.2
    • /
    • pp.56-59
    • /
    • 1981
  • In this paper a further generalization of the theory of multilayer physical adsorption previously developed by the authors is attempted so that the effect of vertical interactions between adsorbent and adsorbate can be explicitly taken into account. In this attempt we have to discard the previously adopted assumption that the molecules in the second layer or above are all in the same physical state. In order to estimate the effect of vertical interactions on the adsorption isotherm the interaction energy between an adsorbed molecule and the adsorbent surface is assumd to vary as $r^{-3}$ where r is the distance that the molecule under consideration is separated from the adsorbent surface. Resulting adsorption isotherm is applied to interpret the adsorption data of tetramethylsilane vapor on iron film and good agreements between observed and calculated values are obtained over wide range of pressure.

Vapor Sorption Property of Charcoal-based Loess Composites (숯과 황토 복합소재의 흡착성능)

  • Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.87-94
    • /
    • 2006
  • The purpose of this study was to evaluate the relationships between the mixing ratio and water vapor sorption property of charcoal-based loess composites for furniture & building materials with environmental friendly. Charcoal-based loess composite can be easily made by blending method with water. But the composites had much brittle fracture pattern with the increase of charcoal content. That is due to the lack of loess that takes linkage role of composites. In water vapor sorption properties, adsorption ability of charcoal was about six times higher than that of loess. Therefore, vapor sorption ability was maximum at the mixture ratio of charcoal 80% and loess 20%. It is considered that wood charcoal based inorganic composite materials can be used for various purposes as a building interior & exterior and furniture members.

  • PDF

Preparation and Characterization of Molecular Sieving Carbon by Methane and Benzene Cracking over Activated Carbon Spheres

  • Joshi, Harish Chandra;Kumar, Rajesh;Singh, Rohitashaw Kumar;Lal, Darshan
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • Molecular sieving carbon (MSC) for separating $O_2-N_2$ and $CO_2-CH_4$ has been prepared through chemical vapor deposition (CVD) of methane and benzene on activated carbon spheres (ACS) derived from polystyrene sulfonate beads. The validity of the material for assessment of molecular sieving behavior for $O_2-N_2$ and $CO_2-CH_4$ pair of gases was assessed by the kinetic adsorption of the corresponding gases at $25^{\circ}C$. It was observed that methane cracking on ACS lead to deposition of carbon mostly in whole length of pores rather than in pore entrance, resulting in a reduction in adsorption capacity. MSC showing good selectivity for $CO_2-CH_4$ and $O_2-N_2$ separation was obtained through benzene cracking on ACS with benzene entrantment of $0.40{\times}10^{-4}\;g/ml$ at cracking temperature of $725^{\circ}C$ for a period of 90 minutes resulting in a selectivity of 3.31:1.00 for $O_2-N_2$ and 8.00:1.00 for $CO_2-CH_4$ pair of gases respectively.

Carbon molecular sieves from soybean straw-based activated carbon for CO2/CH4 separation

  • Xu, Yuxian;Chen, Xiaochuan;Wu, Dan;Luo, Yongjin;Liu, Xinping;Qian, Qingrong;Xiao, Liren;Chen, Qinghua
    • Carbon letters
    • /
    • v.25
    • /
    • pp.68-77
    • /
    • 2018
  • Soybean straw (SS)-based activated carbon was employed as a precursor to prepare carbon molecular sieves (CMSs) via chemical vapor deposition (CVD) technique using methane as carbon source. Prior to the CVD process, SS was activated by 0.5 wt% $ZnCl_2$, followed by a carbonization at $500^{\circ}C$ for 1 h in $N_2$ atmosphere. $N_2$ (77 K) adsorption-desorption and $CO_2$ (273 K) adsorption tests were carried out to analyze the pore structure of the prepared CMSs. The results show that increasing the deposition temperature, time or methane flow rate leads the decrease in $N_2$ adsorption capacity, micropore volume and average pore diameter of CMSs. The adsorption selectivity coefficient of $CO_2/CH_4$ achieves as high as 20.8 over CMSs obtained under the methane flow rate of $30mL\;min^{-1}$ at $800^{\circ}C$ for 70 min. The study demonstrates the prepared CMSs are a candidate adsorbent for $CO_2/CH_4$ separation.

Study of Development of Selective Removal Adsorption Ion Exchange Resin Materials for Fabricated with Chemical-biological Cloth by QFD (QFD 기법을 이용한 특정 유해가스 노출제어 이온선택성 보호복 소재개발연구)

  • Song, Hwa Seon;Koo, Il Seob;Kim, In Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.359-372
    • /
    • 2015
  • Purpose: Through studying the expert's and non-experts panel responses to the questions regarding the attributes of chemical-biological protection cloth quality in terms of the levels of customer demand and technical factors has been studied. We are applied to a QFD matrix with find out the relationship between the selective removal efficiency of chemical-biological cloth and the guidelines of technical approach. Methods: We fabricated several composite of ion-exchange resins with selectively permeable performance designed to facilities water vapor transport and selective adsorption of the harmful gases. With these materials, we characterized on the selectively permeable performance to identify ion-exchange resin with chemical-biological protective cloth. Results: Results showed that ion exchange materials possessed performance with selectively efficiencies as NH3, SOx, NOx and HCl gas. The selective adsorption amount of ammonia and hydrogen gases were $90-80{\mu}g/g$ with TRILITE SCR-BH sulfonated ion exchange resin. The PP non-woven/ion exchange resin adsorbent materials possessed performance with water vapor permeability were 1,100-1,350 g/m2/day, it's was two times high value compare with activated carbon. With these materials, we characterized selectively removal efficiency to identify new ion-exchange material with chemical-biological protective capability. Conclusion: This study shows that a QFD aids in deciding with of the adsorption parameters to optimized with chemical-biological protection cloth manufacturing.