• 제목/요약/키워드: vane method

검색결과 186건 처리시간 0.028초

WindSim을 이용한 풍황탑 차폐오차 구간의 보정치 검증 (Validation of Calibrated Wind Data Sector including Shadow Effects of a Meteorological Mast Using WindSim)

  • 박근성;유기완;김현구
    • 풍력에너지저널
    • /
    • 제4권2호
    • /
    • pp.34-39
    • /
    • 2013
  • The wind resource assessment for measured wind data over 1 year by using the meteorological mast should be a prerequisite for business feasibility of the wind farm development. Even though the direction of boom mounting the wind vane and anemometer is carefully engineered to escape the interference of wakes generated from the met-mast structures, the shadow effect is not completely avoided due to seasonal winds in the Korean Peninsula. The shadow effect should be properly calibrated because it is able to distort the wind resources. In this study a calibration method is introduced for the measured wind data at Julpo in Jeonbuk Province. Each sectoral terrain conditions along the selected wind direction nearby the met-mast is investigated, and the distorted wind data due to shadow effects can be calibrated effectively. The correction factor is adopted for quantitative calibration by carrying out the WindSim analysis.

A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy

  • Long, Yun;Zhang, Yan;Chen, Jianping;Zhu, Rongsheng;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3612-3624
    • /
    • 2021
  • At present, in the case of pump fast optimization, there is a problem of rapid, accurate and effective prediction of cavitation performance. In "A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility" [1], a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments of a mixed flow pump. However, whether this method is applicable to vane pumps with different specific speeds and whether the prediction results of this method are accurate is still worthy of further study. Combined with the experimental results, the research evaluates the sensitivity and accuracy at different flow rates. For a certain operating condition, the method has better sensitivity to different flow rates. This is suitable for multi-parameter multi-objective optimization of pump impeller. For the test mixed flow pump, the method is more accurate when the area ratios are 13.718% and 13.826%. The cavitation vortex flow is obtained through high-speed camera, and the correlation between cavitation flow structure and cavitation performance is established to provide more scientific support for cavitation performance prediction. The method is not only suitable for cavitation performance prediction of the mixed flow pump, but also can be expanded to cavitation performance prediction of blade type hydraulic machinery, which will solve the problem of rapid prediction of hydraulic machinery cavitation performance.

시판된장의 리올로지(Rheology) 특성에 관한 연구 (Flow Properties of Doenjang)

  • 양신철;김선화
    • 한국관광식음료학회지:관광식음료경영연구
    • /
    • 제13권1호
    • /
    • pp.55-68
    • /
    • 2002
  • Flow properties of doenjang samples at various total solid contents (30, 32, 34, 36, 38, 40%) were evaluated in this study. Flow properties of doenjang samples was determined by using Haake concentric cylinderical viscometer and Instron testing machine with capillary extrusion viscometer, and consistency index(K), and flow behavior index(n) was also determined from power models, and yield stress was derived form Casson models and vanes methods. Doenjang samples showed shear-thinning (pseudoplastic) fluid with small magnitude of flow behavior index(n) (n=0.30-0.55). Casson yield stress was from 2.11 to 64.02(Pa). Vane yield stress was more effective than casson yield stress in property of reactivation. Apparent viscosity was decreased with the increase in temperature and activation energy was in the range of 6.58 to 10.70 kJ/mole. From the capillary extrusion method, K and n was increased with the increase in solid content with good correlation with. The result revealed that capillary extrusion method is useful for measuring the flow properties of doenjang.

  • PDF

5공 압력프로브의 측정에 의한 Gun식 가스버너의 스월유동장 고찰 (Investigation of the Swirling Flow Fields of a Gun-Type Gas Burner by the Measurement of a Five-Hole Pressure Probe)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.19-23
    • /
    • 2015
  • The swirling flow fields of a gun-type gas burner(GTGB) without a combustion chamber were measured by a straight-type five-hole pressure probe(FHPP) under the cold flow condition. The three kinds of velocity components and the static pressure were calculated by using a non-nulling calibration method covering the velocity reduction performance of the effective flow attack angle of ${\pm}80^{\circ}$. As a result, the velocity and static pressure measured by a FHPP comparatively shows the better performance on the swirling flow of a GTGB than those measured by X-probe.

로터리 버너의 축류형 팬 주위 유동특성 연구 (A Study on the Flow Characteristics Around an Axial Fan of Rotary Burner)

  • 고동국;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 2003
  • The flow analysis of the axial fan of rotary burner was performed by SIMPLE(Semi Implicit Method for Pressure Linked Equations) algorithm and finite volume mothod performed in the case of 3-D, incompressible, turbulent flow. In this study, the coordinate transformation was adapted for the complex geometry of axial fan, and the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent flow. Multi-block grid system was used for flow field and divided into four domains such as the inlet, outlet, flow field of rotating vane, and tip clearance. Fan rotation was simulated by rotational motion using MRF(Multiple Rotating Reference Frame) in steady, incompressible state flow.

  • PDF

반경류 터보기계 회전차 내의 비점성 유동해석 및 성능예측 (Calculation of Inviscid Flows and Performance Prediction of Radial Turbomachine)

  • 강신형;김영호;최명렬
    • 설비공학논문집
    • /
    • 제2권3호
    • /
    • pp.199-207
    • /
    • 1990
  • Inviscid flows in a radial turbomachine and its performance are predicted by using a pannel method. Possibility of the method to be used for design purpose is investigated. The flows in a radial turbomachine are reasonably simulated with several off-design flow rates. The diameter ratio of the rotor and inlet and outlet vane angles are systematically changed so that performance of the machine in various designs are predicted. All the predictions are shown to be in the range of Cordier curve. On the other hand, calculated slip factors are also in good agreement with values given by an empirical formula.

  • PDF

열병합 보일러 SCR 장치의 유동 균일화를 위한 최적화 연구 (Optimization for Flow Uniformity on the Selective Catalytic Reduction (SCR) System of a Steam Supply Boiler)

  • 박영빈;장춘만
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.415-420
    • /
    • 2009
  • Selective Catalytic Reduction(SCR) has been used for the reduction of $NO_x$ in a steam supply boiler. Recently, the reduction of $NO_x$ becomes an important research field because of its negative effect on an environment. Shape optimization of circular poles installed in the chamber, which is located in upstream of a SCR, has been performed using response surface method and three-dimensional Navier-Stokes analysis to enhance gas flow uniformity. Three design parameters, diameter, arranging angle and stretching ratio of circular poles, are considered in the present study. Throughout the shape optimization of a circular pole, gas flow uniformity is successfully increased by decreasing local recirculation flow in a square duct chamber. Recirculation flow observed in the corner of the square duct can be reduced by proper installation of a guide vane or a blunt body. Detailed flow characteristics are also analyzed and discussed.

  • PDF

마이크로 관류수차의 구조 간소화 및 성능향상 (Simplification of Turbine Structure and Performance Improvement of Micro Cross-Flow Hydropower Turbine)

  • 쿠로카와준이치;최영도;자오린후
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.819-824
    • /
    • 2005
  • Recently, micro hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. However, suitable turbine type is not normalized yet in the range of micro hydropower and it is necessary to study for the effective turbine type. Moreover, relatively high manufacturing cost by the complex structure of the turbine is the highest barrier for developing the micro hydropower turbine. Therefore, a cross-flow turbine is proposed for micro-hydropower in this study because of its simple structure and high possibility of applying to low head. The purpose of this study is to further simplify the turbine structure and improve the performance, A guide vane is removed and the runner chamber is made compact using a new air supply method. The results show that the efficiency of the turbine is improved in a wide operating range and the size of the turbine is remarkably reduced.

  • PDF

2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구 (Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine)

  • 마상범;김성;최영석;차동안;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

A Numerical Study on the Effect of Inlet Guide Vane Angle on the Performance of Francis Hydraulic Turbine

  • Kim Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.750-757
    • /
    • 2005
  • The objective of this study is an understanding of the effect of inlet flow angle on the output power performance of a Francis hydraulic turbine, An optimum induced angle at the inlet of the turbine is one of the most important design parameters to have the best performance of the turbine at a given operating condition, In general. rotating speed of the turbine is varied with the change of water mass flowrate in a volute, The induced angle of the inlet water should be properly adjusted to the operating condition to have maximum energy conversion efficiency of the turbine, In this study. a numerical simulation was conducted to have detail understanding of the flow phenomenon in the flow path and output power of the model Francis turbine. The indicated power produced by the model turbine at a given operating condition was found numerically and compared to the brake power of the turbine measured by experiment at KIER. From comparison of two results, turbine efficiency or energy conversion efficiency of the model turbine was estimated. From the study, it was found that the rotating power of the turbine linearly increased with the rotating speed. It means that the higher volume flow rate supplied. the bigger torque on the turbine shaft generated. The maximum brake efficiency of the turbine is around 46$\%$ at 35 degree of induced angle. The difference between numerical and experimental output of the model turbine is defined as mechanical efficiency. The maximum mechanical efficiency of the turbine is around 93$\%$ at 25$\∼$30 degree of induced angle.