• Title/Summary/Keyword: vane angle

Search Result 164, Processing Time 0.021 seconds

Performance Variations of Vaned Diffusers with Solidity and Exit Vane Angle (베인 디퓨저의 솔리디티와 출구 유동각에 따른 성능변화)

  • Cho, S.K.;Kang, S.H.;Cha, B.J.;Lee, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.422-427
    • /
    • 2000
  • The design of low-solidity vaned diffusers and the effect on the performance of a turbocharger compressor is discussed. The effect of vane number and turning angle was investigated while maintaining a basic design with a leading edge angle of $70^{\circ}$, leading and trailing edge radius ratios of 1.1 and 1.3. All results are compared with those obtained with the standard vaneless diffuser configuration and it was shown that all designs increased and shifted the pressure ratio to reduced flowrates. Despite the low-solidity configuration none of the vane designs provided a broad operating range, and the vane leading edge angle was not main factor that system went into the surge condition. The diffuser of higher trailing edge angle improved the flow range for the compressor to operate at lower flow region.

  • PDF

A Numerical Analysis on Prediction of Cut-diameter according to Vane Outflow Angle in the Axial-flow Cyclone (축상유입식 사이클론의 베인 유출각도에 따른 절단입경 예측에 관한 수치해석)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.111-117
    • /
    • 2012
  • Dust collecting performance of axial-vane type cyclone for oil mist was analyzed in this study. For predicting cut diameter size of cyclone, the number and angle of vane ($tan{{\beta}_2}^{\prime}$) was simulated by CFD. As the result, $tan{{\beta}_2}^{\prime}$ was decreased as the number of vane was increased and the angle of inclination(${{\beta}_2}^{\prime}$) decreased, and it cause strong swirl flow. Therefore, it could be confirmed that as the number of vane was increased and the angle of inclination was decreased, cut diameter size was decreased. Also, by verifying the results of CFD through experiment, the cut diameter size could be $2{\mu}m$ at $4m^3/min$ of flow rate.

The influence of guide vane opening on the internal flow of a francis turbine

  • Wei, Qingsheng;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.274-281
    • /
    • 2013
  • The variable demand on the energy market requires a great flexibility in operating hydro turbines. However, Francis turbine operated at off-design conditions poses technical challenges related to large unsteady forces given by residual swirl and angular momentum. In order to improve the performance of a Francis turbine, the paper presents a numerical investigation of the 3D flow in the turbine at off-design conditions and discusses the influence of variable guide vane openings on the internal flow of a Francis turbine with the help of computational fluid dynamics. First, the internal flow characteristics of Francis turbine operated by varied guide vane angle at off design condition are computed and the optimal guide vane angle is obtained. Secondly, the Francis turbine is operated with guide vane number varies at the optimal guide vane angle. Finally, pressure contours and velocity distributions in the distributor are discussed and compared.

Effect of Internal Geometry and Swirler Vane Angle of Nozzle on Spray Characteristics with Distance from Nozzle Tip (노즐의 내부형상 및 스월러 베인각의 변화가 선단거리에 따른 분무특성에 미치는 영향)

  • Jeong, H.C.;Choi, G.M.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • The purpose of this study is to investigate the effect of swirler vane angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single spray. The characteristics of sprat's have been investigated by measuring the spray angle, droplet size and velocity Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler vane angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber The effect of vane angle un the spray characteristics was greater than the aspect ratio of swirl chamber for single spray.

  • PDF

Flow Analysis for Optimum Design of Mixing Vane in a PWR Fuel Assembly

  • In, Wang-Kee;Oh, Dong-Seok;Chun, Tae-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.327-338
    • /
    • 2001
  • A computational fluid dynamics (CFD) analysis was performed to propose the optimum design of flow mixing vane on the space grid in a PWR fuel assembly. The flow mixing vanes considered in this study for optimum design are swirl-vane and twisted-vane. A single subchannel of one grid span was modeled using flow symmetry to minimize the computational effort. The CFD predictions are in good agreement with the experimental results for the split- vane, which shows the applicability of the CFD method. The mixing effect by swirling flow and crossflow, and the pressure drop were estimated and compared for the various vane angles. The optimum vane angle is proposed to be 40。 and 35。 from the direction of axial flow for the swirl-vane and the twisted-vane, respectively.

  • PDF

Vaned Wheel Atomization of CWM (Vaned Wheel Atomizer에 의한 CWM 미립화)

  • 김성준;김용선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.974-982
    • /
    • 1992
  • The atomizations of CWM slurry and water are done by a wheel atomizer which is designed and manufactured for this experiment. The variables of the experiment are the angle of vane, aspect ratio, particle loading and the mean size of coal particle distribution. The main purposes of the experiment are to know how the angle of vane and aspect ratio of vane influence the size distribution of CWM droplets. The experimental results say there are no appreciable effects on the mean size of CWM droplets from the change of loading of coal prticles in slurry. The mean size of coal particle in slurry, however, influence quite strongly the mean size of CWM droplets. The mean size of CWM droplets is quite strongly affected by the angle of vane. The size distribution of CWM droplets is controllable by the change of aspect ratio.

Performance Characteristics of In-Line Duct Fan Having Mixed Flow Impellers (혼류임펠러를 갖는 관류형팬의 성능특성)

  • Park, Jin-Wook;Lee, Chul-Hyung;Park, Wan-Soon;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • The performance of in-line duct fan depends on the design parameters of impeller and guide vane such as sweep back angle of impeller hub, guide vane angle etc. In this study four kinds of impellers having different sweep back angles, $0^{\circ}$, $17.5^{\circ}$, $35^{\circ}$, $52.5^{\circ}$ with 8 guide vanes, and different guide vane angles, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ were selected and their performance measured to investigate the effects of design parameters. The results show that both sweep back angle of impeller hub and the guide vane angle have large effect on the efficiency. Especially, it was found that the mixed flow impellers having sweep back angle between $17.5^{\circ}$ and $35^{\circ}$ gave good performances for in-line duct fan.

A Study on Dust Collection Efficiency of Axial-vane Type Cyclone for Oil Mist (오일미스트용 축상 유입식 사이클론의 집진효율에 관한 연구)

  • Yi, Chung-Seob;Shin, Hae-Joong;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.415-420
    • /
    • 2012
  • Dust collecting performance of axial-vane type cyclone for oil mist was analyzed in this study. For predicting cut diameter size of cyclone, the number and angle of vane (${\beta}_2{^{\prime}}$) was calculated by CFD. As the result, ${\beta}_2{^{\prime}}$ was decreased as the number of vane was increased and the angle of inclination (${\beta}_2{^{\prime}}$) decreased, and it cause strong swirl flow. Therefore, it could be confirmed that as the number of vane was increased and the angle of inclination was decreased, cut diameter size was decreased. Also, by verifying the results of CFD through experiment, the cut diameter size could be 2 ${\mu}m$ at 4 $m^3/min$ of flow rate.

Numerical Simulation on the Performance of Axial Vane Type Gas-Liquid Separator with Different Guide Vane Structure

  • Yang, Fan;Liu, Ailan;Guo, Xueyan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.86-98
    • /
    • 2017
  • In order to obtain high efficiency and low resistance droplet separation apparatus, axial vane type gas-liquid separators with different guide vanes were designed, and the RNG $k-{\varepsilon}$ model as well as discrete phase model (DPM) were used to investigate the flow pattern inside the separators. It was shown that the tangential velocity distribution under different guide vanes have Rankine vortex characteristics, pressure distribution exhibits a high similarity which value becomes big as the increase of the blade outlet angle and the decrease of the guide vane numbers. The increase of the guide vane numbers and the decrease of the blade outlet angle could make separation improve significantly. The separation efficiency is almost 100% when the droplet diameter is bigger than $40{\mu}m$.

A Study on Characteristics of Design Parameters for In-line Duct Fan (관류형팬의 설계변수 특성에 관한 연구)

  • Park, J.W.;Huh, J.C.;Lee, C.H.;Park, W.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.373-377
    • /
    • 2005
  • The Performance of in-line duct fan depends on the design parameters of impeller and guide vane. such as sweep back angle of impeller, the number of blades, outlet blade angle, guide vane angle etc. In this experimental study total four kinds of impellers having different sweep back angles, $90^{\circ},\;72.5^{\circ},\;55^{\circ},\;37.5^{\circ}$ with 8 guide vanes, different the number of blades, 6ea, 8ea, 10ea, 12ea, different kinds of outlet blade angles, $30^{\circ},\;45^{\circ}.\;60^{\circ}$ and different kinds of guide vane angles, $15^{\circ},\;30^{\circ},\;45^{\circ}$ were selected and their performance measured to investigate the effects of them. The results were non-dimensionalized to compare their performance.

  • PDF