• Title/Summary/Keyword: van Genutchen equation

Search Result 1, Processing Time 0.018 seconds

Multiphase Modeling on the Convective Transport of an Organic Solvent through Unsaturated Soils (비포화 토양층 내 유기 용매의 이류 이동에 대한 다상 모델링)

  • Lee Kun Sang
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.20-26
    • /
    • 2004
  • In-situ photolysis is one of the most promising ways to clean up a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). This study focuses on the mathematical description and model development of the convective upward transport of an organic solvent driven by evaporation and photodecomposition at the surface as the major transport mechanism in the clean up process. A finite-element-based numerical model was proposed to incorporate effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of van Genutchen equation for more accurate description of k-S-p relations. This paper presents results of extensive numerical calculations conducted to investigate the various parameters that play a role in the solvent migration through a laboratory-scale unsaturated soil column. The numerical results indicate that gravity affects significantly on the fluids distribution and evaporation for highly permeable soils. The soil texture has a profound influence on the fluid saturation profile during evaporation process. The amount of solvent convective motion increases with increasing evaporation rates and decreasing initial water saturation. Simulations conducted in this study have shown that the developed model is very useful in analyzing the effects of various parameters on the convective migration of an organic solvent in the soil environments.