• Title/Summary/Keyword: van Genuchten model

Search Result 31, Processing Time 0.02 seconds

Analysis of Calculation Model for Specific Air-water Interface Area in Unsaturated Porous Media (불포화 다공성 매질체의 공기-물 경계면 비표면적 계산모델 분석)

  • Kim, Min-Kyu;Kim, Song-Bae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.83-93
    • /
    • 2006
  • In unsaturated porous media, the air-water interface (AWI) plays an important role in removing of biocolloids such as bacteria, viruses, and protozoan (oo)cysts. In this study, four models related to calculation of specific AWI area are analyzed to determine the appropriate model, and the selected models are verified using the previously reported experimental data. The results indicate that the modified model from Niemet et al. (2002) is the most appropriate tool for calculating the specific AWI area using the van Genuchten (1980) parameters obtained from the water retention curve. Hence, it is expected that this model could be used to quantitatively determine the attachment of biocolloids to AWI in the transport modeling of biocolloids in unsaturated porous media.

An Interpretation of Soil Water Retention Curves of Weathered Soils Using Micro-Membrane (마이크로 멤브레인을 이용한 풍화토의 함수특성곡선 분석)

  • Oh, Seboong;Kim, Seongjin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.17-27
    • /
    • 2021
  • It takes a long period to conduct the test on soil water retention curve (SWRC) in unsaturated soils. To improve such a problem, the high air entry disk has been replaced by micro-membrane. After the soil water retention test, the results by the micro-membrane were compared with those by the ceramic disk. Multiple samples in 5 regions were used to validate that SWRCs by micro-membrane are equivalent to those by ceramic disk. Therefore, a quick procedure based on micro-membrane has been developed, which makes it available to acquire much soil water retention data. The data of SWRCs were obtained for total 29 samples using ceramic disk or micro-membrane. For Korean weathered soils, the unsaturated hydraulic characteristics are sorted by three groups. Based on van Genuchten model, the group is divided by the parameter n, and the value of n could be correlated to the void ratio as each function.

Soil-Water Characteristic Curves for Drying and Wetting Processes in Granite-Weathered Soil Based on Variations in Fine Contents (세립분 함량을 고려한 국내 화강풍화토의 건조 및 습윤 함수특성곡선 분석)

  • Lee, Sangbeen;Ryou, Jae-Eun;Seo, Jinuk;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • In current slope stability analysis techniques, slope stability is evaluated based on the saturated-soil theory. However, soil-water characteristics change frequently depending on the climate. Therefore, because the saturated soil theory has limitations, the application of the unsaturated soil theory is necessary for slope stability. It is also important to evaluate the engineering properties of unsaturated soil because the capillary absorption capacity is reduced due to heavy rain, thereby causing a reduction in slope stability. In this study, soil-water characteristic tests were performed using four samples with different fine contents (0%, 10%, 20%, and 30%) using granite-weathered soil in domestic production areas. In particular, to consider the previously conducted drying process as well as the evaluation of stability due to heavy rain on the actual slope, a wetting process was conducted, in which the water content was increased. In addition, the van Genuchten (1980) model, which is the most consistent theoretical equation for the experiment, was used with various theoretical equations, and the parameters were analyzed according to the fine content of the granite-weathered soil for the drying and wetting processes.

A Review on Measurement Techniques and Constitutive Models of Suction in Unsaturated Bentonite Buffer (불포화 벤토나이트 완충재의 수분흡입력 측정기술 및 구성모델 고찰)

  • Lee, Jae Owan;Yoon, Seok;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.329-338
    • /
    • 2019
  • Suction of unsaturated bentonite buffers is a very important input parameter for hydro-mechanical performance assessment and design of an engineered barrier system. This study analyzed suction measurement techniques and constitutive models of unsaturated porous media reported in the literature, and suggested suction measurement techniques and constitutive models suitable for bentonite buffer in an HLW repository. The literature review showed the suction of bentonite buffer to be much higher than that of soil, as measured by total suction including matric suction and osmotic suction. The measurement methods (RH-Cell, RH-Cell/Sensor) using a relative humidity sensor were suitable for suction measurement of the bentonite buffer; the RH-Cell /Sensor method was more preferred in consideration of the temperature change due to radioactive decay heat and measurement time. Various water retention models of bentonite buffers have been proposed through experiments, but the van Genuchten model is mainly used as a constitutive model of hydro-mechanical performance assessment of unsaturated buffers. The water characteristic curve of bentonite buffers showed different tendencies according to bentonite type, dry density, temperature, salinity, sample state and hysteresis. Selection of water retention models and determination of model input parameters should consider the effects of these controlling factors so as to improve overall reliability.

Hysteresis of the Suction Stress in Unsaturated Weathered Mudstone Soils (불포화 이암풍화토에서의 흡입응력 이력현상)

  • Song, Young-Suk;Choi, Jin-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.55-66
    • /
    • 2012
  • To investigate the hysteresis of the suction stress in unsaturated weathered mudstone soils (CL), matric suction and volumetric water content were measured in both drying and wetting processes using Automated Soil-Water Characteristics Curve Apparatus. The drying and wetting processes in unsaturated soils were reproduced in the test; the drying process means to load matric suction to spill pore water from the soils, and the wetting process means to unload matric suction to inject pore water into the soils. Based on the measured result, Soil Water Characteristic Curve(SWCC)s were estimated by van Genuchten model (1980). SWCCs have nonlinear relationship between effective degree of saturation and matric suction. The hysteresis in SWCCs between drying and wetting processes occurred. As a result of estimating Suction Stress Characteristic Curve(SSCC) using Lu and Likos model (2006), the suction stress rapidly increased in the low level of matric suction and then increased slightly. Also, the hysteresis in SSCCs between drying and wetting processes occurred. In order to design geo-structures and check its stability considering unsaturated soil mechanics, therefore, it is more reasonable that the SSCC of drying process should be applied in the condition of rainfall infiltration and the SSCC of wetting process in the condition of evaporation or drainage.

Estimation Model for Simplification and Validation of Soil Water Characteristics Curve on Volcanic Ash Soil in Subtropical Area in Korea (난지권 화산회토양의 토색별 토양수분 특성곡선 및 단일화 추정모형)

  • Hur, Seung-Oh;Moon, Kyung-Hwan;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Lim, Han-Cheol;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.329-333
    • /
    • 2006
  • Most of volcanic ash soils in South Korea are distributed in Jeju province which is an island placed on southern part of Korea and has steep slope mountain area. There are many soils containing high contents of organic matter (OM) derived from volcanic ash in Jejudo, also. Therefore, irrigation and drainage in volcanic ash soil different with general soil which has low OM content have to be applied with another management way, but studies searching appropriate methods for them are set on insufficient situation because the area of volcanic ash soil in South Korea is only 1.3% (130,000ha). This study was conducted for analysis of soil water content and irrigation quantity appropriate for crops cultivated in volcanic ash soil with high OM content. Although soils with different soil color have the same soil texture, soil water characteristics curve by soil color showed the difference of water retention capability by OM content. But, this characteristics classified with soil color could be unified by scaling technique with similitude analysis method which get dimensionless water content using a present water content, a residual water content and saturated water content (or water content at 10kPa). A relation of gravimetric soil water content (GSWC) and dimensionless water content by the results showed a form of power function. The dimensionless water content (DWC) express a relative saturation degree of present water content. This was also expressed by van Genuchten model which describe the relation between relative saturation degrees and matric potentials. These results on soil water characteristics curve (SWCC) of volcanic ash soil will be the basic of irrigation plan in area having high organic contents into soil.

Monitoring of Water Content and Electrical Conductivity in Paddy Soil Profile by Time Domain Reflectometry (Time Domain Reflectometry를 이용한 논토양 단면의 수분함량 및 전기전도도 모니터링)

  • Yoo, Sun-Ho;Han, Gwang Hyun;Bae, Byung-Sul;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • To obtain informations on vertical movements of water and solute in rice paddy field during the growing season, soil water contents and bulk electrical conductivities (${\sigma}_a$) were monitored using Time Domain Reflectometry. Soil water contents with depth showed ${\varepsilon}$-shaped profiles constituting of partly saturated zones at top and bottom layers and unsaturated zones (20-100cm) between them. Analysis by fitting with a van Genuchten-type model showed that soil water contents at 60cm were affected by both water supplied from surface water and groundwater, but at 80cm mainly affected by groundwater. Water percolation at the rate of 2cm $day^{-1}$ rates were, but large fluctuation from 10 to 38cm $day^{-1}$ in C1 layer (60-90cm). Therefore, it can be said that any water or solute entering C1 layer is very rapidly transported to C2 layer, especially during the period of high groundwater table staying, and retarded to a relatively constant percolation rate in C2 layer. This can be manifested by the fact that rapid decrease and steady increase of electrical conductivities at 50 and 110cm depth respectively, were found around that period.

  • PDF

Developing a SWMM-HYDRUS model for Enhanced simulation of Low Impact Developments (저영향 개발 모의 향상을 위한 SWMM-HYDRUS 결합 모델 개발)

  • Baek, Sangsoo;Cho, Kyunghwa;Pachepsky, Yakov
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.67-67
    • /
    • 2017
  • 급속한 산업화와 도시화로 인하여, 투수지역은 감소함으로써, 개발전과 다른 지표, 지표하 유출이 나타난다. 이에 대한 대안으로 최근 저영향개발 (LID)이 수문학적 및 환경, 생태적 개선으로 대안으로 대두 되고 있다. 이에 많은 연구자들이 EPA SWMM 모델의 이용하여 LID 설치 전, LID를 모의하였으나, 불포화토양 및 토양 내의 matric head에 대한 고려가 없어 정확한 LID 모의가 힘든 실정이다. 이에 본 연구에서 상세한 토양 모의가 가능 HYDRUS를 이용하여, SWMM-HYDRUS 모델을 개발하였다. EPA SWMM 모델의 경우, 가장 상단의 layer에서 green ampt equation을 이용하여 침투량을 계산 후, 다음 layer에서 Darcy eqation을 이용하여 토양 물이동을 계산되어진다. 하지만 기존의 SWMM모델의 경우, 불포화토양내의 물 흐름에 대한 고려와 Matric head와 Pond depth에 대한 고려가 없어, LID 모의 시 한계점이 나타났다. 이에 본 연구에서는 이러한 한계점을 개선하기 위하여, 기존의 EPA SWMM의 LID 모듈을 Van Genuchten's equaton과 Richard Equation을 이용하여 정확한 토양 물 흐름을 계산하는 HYDRUS을 SWMM 모델에 결합하여, 더욱 정확한 LID 모의를 실시하였다. 개선된 SWMM-HYDRUS 모델의 모의 결과, 기존의 SWMM에서 한계점을 보여주는 Metric head를 고려하여 불포화 침투가 이루어지며, 또한 포화 후 LID 위에 존재하는 Pond depth를 고려해주는 결과가 나타났다. 향후 개발된 SWMM-HYDRUS모델를 이용하여 LID를 검증 시 기존의 모델보다 정확한 모의가 가능하다.

  • PDF

Estimation on Unsaturated Characteristic Curves of Acid Sulfate Soils (ASS) (산성토의 불포화 특성곡선 산정)

  • Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • The physical properties and unsaturated characteristics of acid sulfate soils were investigated and analyzed. As the results of measuring physical properties of the acid sulfate soils obtained around the Ilkwang mine area, the dry unit weight is $1.246t/m^3$ and this soil is classified into the silty sand (SM) by USCS. Soil Water Characteristics Curves (SWCC) of the drying and wetting paths were measured by the automated SWCC apparatus. Also, Hydraulic Conductivity Functions (HCF) of the drying and wetting paths were estimated by the van Geunchten (1980) model which is the most well-known parameter estimation method. The hydraulic conductivity of acid sulfate soils in the dry path was continuously decreased with increasing the matric suction. However, the hydraulic conductivity in the wetting path was decreased relatively small with increasing matric suction and decreased suddenly just before water entry value of matric suction. Meanwhile, the hysteresis phenomenon was occurred in SWCCs and HCFs during the drying and wetting paths.

Interpreting in situ Soil Water Characteristics Curve under Different Paddy Soil Types Using Undisturbed Lysimeter with Soil Sensor

  • Seo, Mijin;Han, Kyunghwa;Cho, Heerae;Ok, Junghun;Zhang, Yongseon;Seo, Youngho;Jung, Kangho;Lee, Hyubsung;Kim, Gisun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.336-344
    • /
    • 2017
  • The soil water characteristics curve (SWCC) represents the relation between soil water potential and soil water content. The shape and range of SWCC according to the relation could vary depending on soil characteristics. The objective of the study was to estimate SWCC depending on soil types and layers and to analyze the trend among them. To accomplish this goal, the unsaturated three soils were considered: silty clay loam, loam, and sandy loam soils. Weighable lysimeters were used for exactly measuring soil water content and soil water potential. Two fitting models, van Genuchten and Campbell, were applied. Two models entirely fitted well the measured SWCC, indicating low RMSE and high $R^2$ values. However, the large difference between the measured and the estimated was found at the 30 cm layer of the silty clay loam soil, and the gap was wider as soil water potential increased. In addition, the non-linear decrease of soil water content according to the increase of soil water potential tended to be more distinct in the sandy loam soil and at the 10 cm layer than in the silty clay loam soil and at the lower layers. These might be seen due to the various factors such as not only pore size distribution, but also cracks by high clay content and plow pan layers by compaction. This study clearly showed difficulty in the estimation of SWCC by such kind of factors.