• Title/Summary/Keyword: valves

Search Result 1,594, Processing Time 0.034 seconds

Fault Detection of Governor Systems Using Discrete Wavelet Transform Analysis

  • Kim, Sung-Shin;Bae, Hyeon;Lee, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.662-673
    • /
    • 2012
  • This study introduces a condition diagnosis technique for a turbine governor system. The governor system is an important control system to handle turbine speed in a nuclear power plant. The turbine governor system includes turbine valves and stop valves which have their own functions in the system. Because a turbine governor system is operated by high oil pressure, it is very difficult to maintain under stable operating conditions. Turbine valves supply oil pressure to the governor system for proper operation. Using the pressure variation of turbine and governor valves, operating conditions of the turbine governor control system are detected and identified. To achieve automatic detection of valve status, time-based and frequency-based analysis is employed. In this study, a new approach, wavelet decomposition, was used to extract specific features from the pressure signals of the governor and stop valves. The extracted features, which represent the operating conditions of the turbine governor system, include important information to control and diagnose the valves. After extracting the specific features, decision rules were used to classify the valve conditions. The rules were generated by a decision tree algorithm (a typical simple method for data-based rule generation). The results given by the wavelet-based analysis were compared to detection results using time- and frequency-based approaches. Compared with the several related studies, the wavelet transform-based analysis, the proposed in this study has the advantage of easier application without auxiliary features.

A Study On Steam Turbine Valve Controls In Power Plant (발전소 증기터빈 밸브제어에 관한 고찰)

  • Choi, In-Kyu;Jeong, Chang-Ki;Kim, Byoung-Chul;Kim, Jong-An;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2640-2642
    • /
    • 2005
  • Servovalves are widely used in industrial areas in order to control the position of large steam valves which regulate steam flow to prime mover. We must control the position of large steam valves to regulate flow of working fluids in the process. The small pilot valves are used to regulate the large main valves in case that the pressure of control fluids supplied to servovalves is low about $12kg/cm^2$. But, in case that the pressure of control fluids supplied to servovalves is high enough about $110kg/cm^2$, the pilot valves are not needed and servovalves can control directly the large main valves due to its large working forces. Additionally, the basic structures of armature coil should be different according to the types of control system even in the same servovalve. This paper compares and describes some integral types of flow control.

  • PDF

clinical results of the xenograft cardiac valves (이종심보직판막의 임상적 평가)

  • 박창권
    • Journal of Chest Surgery
    • /
    • v.22 no.1
    • /
    • pp.106-115
    • /
    • 1989
  • Clinical results with the xenograft cardiac valves were reviewed for 212 patients who underwent heart valve replacement from January 1981 to December 1987. One hundred and twenty-four Carpentier-Edwards k 88 Ionescu Shiley valves were used. Overall operative mortality was 11 out of 212[5.1%]: 5 out of 153[3.39o] for mitral valve replacement [MVR], 2 out of 34[5.9%] for aortic valve replacement [AVR], 0 out of 4[0%] for Tricuspid valve replacement [TVR], and 4 out of 21[19.1%] for double valve replacement [DVR;MVR+ AVR]. Two hundred and one operative survivors were followed up for a total of 824.3 patient-years [a mean 3.9*1.8 yrs], and the follow up was 78.1%. The linealized complication rates were 0.1% emboli / patient-year, 1.0% endocarditis/ patient-year and 2.2% overall valve failure / patient-year. A linealized rate of primary tissue failure was 0.7*/o/ patient-year. The actuarial survival rates including the operative mortality were 92*2.8% at 4 years and 85*4.3% at 7 years after surgery using the Xenograft cardiac valves. Probabilities of freedom from thromboembolism and overall valve failure were 73*11.0% and 69*2.4% at 7 years after surgery using the Xenograft cardiac valves respectively. The intrinsic durability of the Xenograft cardiac valves appears to be relatively well satisfactory over the long term [4 to 7 years] and the risk of failure appears well balanced by the advantages of a low incidence of thromboembolism and no mandatory anticoagulant therapy.

  • PDF

Analyses of Failure Causes and an Experimental Study on the Opening Characteristics of Swing Check Valves (스윙형 역지밸브의 고장 원인 분석과 열림 특성에 관한 실험적 연구)

  • Song, Seok-Yoon;Yoo, Seong-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.15-25
    • /
    • 2005
  • Check valves playa vital role in the operation and protection of nuclear power plants. Check valves failure in nuclear power plants often lead to a plant transient or trip. The analysis of historical failure data gives information on the populations of various types of check valves, the systems they are installed in, failure modes, effects, methods of detection, and the mechanisms of the failures. A majority of check valve failures are caused by improper application. The experimental apparatus is designed and installed to measure the disc positions with flow velocity, Vopen and Vmin for 3 inch and 6 inch swing check valves. The minimum flow velocity necessary to just open the disc at a full open position is referred to as Vopen, and Vmin is defined as the minimum velocity to fully open the disc and hold it without motion. In the experiments, Vmin is determined as the minimum flow velocity at which the back stop load begins to increase after the disc is fully opened or the oscillation level of disc is reduced below $1^{\circ}$. The results show that the Vmin velocities for 3 inch and 6 inch swing check valves are about 27.3% and 17.5% higher than the Vopen velocities, respectively.

Mid-term Experience with the Pyrolytic Carbon Bileaflet Mechanical Valves (쌍엽 기계판막에대한 임상연구)

  • 박계현
    • Journal of Chest Surgery
    • /
    • v.25 no.2
    • /
    • pp.137-148
    • /
    • 1992
  • Until March 1991, 435 St. Jude Medical valves and 330 CarboMedics valves were implanted in 358 and 251 patients, respectively. 300 patients were male and 309 were female with the mean age of 35.6 years[from 2 month to 68 years]. 458 valves were implanted in the mitral, 272 in the aortic, 25 in the tricuspid, and 10 in the pulmonic position. Postoperatively, all patients except for very young patients were given coumadin with or without dipyridamole for anticogulation Operative mortality was 7.3%[45 deaths per 618 operations]. A total follow-up of 1244.8 patient-years was achieved for the operative survivors with a follow-up rate of 96.8%, [mean follow-up period=26.3 months /patient, ranging from 1 to 80 months]. Functional improvement was evident; 66.7% of these patients were in NYHA functional class III or IV preopratively, whereas 98.4% are in class I or II pos-toperatively. There occurred 13 late deaths[7 valve-related] and 55 valve-related complications. Linearized rates of late death and valve-related complications were 1.0%/ patient-year, 4.42%/patient-year, respectively. Rates of thromboembolism, anticoagluation-related hemorrhage were 1.12%/patient-year, 1.69% /patient-year, respectively. Actuarial survival at 5 years is 96.0% and complication-free survival at 5 years is 83.9%. No difference in survival and incidence of complications was found between the St. Jude and CarboMedics valves. On the basis of this experience, we believe that the pyrolytic carbon bileaflet mechanical valves are safe and preferable choice among current valve prostheses.

  • PDF

A Study on the Stiffness of Wave Washer Spring (웨이브 와셔 스프링의 강성치에 관한 연구)

  • 이수종;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.74-81
    • /
    • 1996
  • The wave washer springs are widely used in non-return valves of fluid, especially in air check valves to confirm the rapid shut-off of valve propers. The stiffness of wave washer springs used in suction and exhaust valves of reciprocating air compressor play an important role on efficiency of the compressor. If the stiffness of the spring is too high, the pressure differences necessary to open the valves become high and the volumetric efficiency of cylinder decreasse. If the stiffness of the spring too low, the valve can not be closed rapidly and the inverse flow of air can take place. So, the optimum stiffness of valve spring is very important and it will be very helpful that the stiffness of wave washer springs to be used in suction and exhaust valves can be calculated in design stage of air compressor. In this paper the formula for calculating the spring constant of wave washer spring is introduced using bending and torsion theory of frames. The experiments are also carried out to measure the spring constants of several samples. It is proven that the calculated spring constants of wave washer springs are coincided well with measured values and that the formula presented in this paper for calculating the spring constants of wave washer spring is very useful for design of valves used in reciprocating air compressor.

  • PDF

Structure Analysis and Torque Reduction Design of Industrial Ball Valve (산업용 볼밸브의 구조 해석 및 토크 저감 설계)

  • Ha, Sun-Ho;Kim, Sang-Jin;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.37-45
    • /
    • 2014
  • Ball valves are used as a key element in the process industries. The industrial development of valves has increased steadily, but continued improvement requires high design reliability and long service life. Currently, the development of high performance valves is not easy because of the lack of relevant technology in Korea. Valves are being imported at a level of up to 58 percent of the domestic market, which represents a value of almost 7 million US dollars. Therefore, in this work, the improvement of the design and performance of industrial valves has been studied in an attempt to achieve valves that will have longer service life and better output during operation. The structural stability was evaluated using the ANSYS FSI (Fluid-Structural Interaction) module. Moreover, to obtain maximum product reliability, torque analysis simulation was performed to compare and experimental results. The simulation results were used to predict the change in torque by changes in shape, thereby reducing the time and cost of manufacturing a number of prototypes for experimental validation.

Mechanism for Cavitation Phenomenon in Mechanical Heart Valves

  • Lee Hwan-Sung;Taenaka Yoshiyuki
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1118-1124
    • /
    • 2006
  • Recently, cavitation on the surface of mechanical heart valve has been studied as a cause of fractures occurring in implanted Mechanical Heart Valves (MHVs). It has been conceived that the MHVs mounted in an artificial heart close much faster than in vivo sue, resulting in cavitation bubbles formation. In this study, six different kinds of mono leaflet and bileaflet valves were mounted in the mitral position in an Electro-Hydraulic Total Artificial Heart (EHTAH), and we investigated the mechanisms for MHV cavitation. The valve closing velocity and a high speed video camera were employed to investigate the mechanism for MHV cavitation. The closing velocity of the bileaflet valves was slower than that of the mono leaflet valves. Cavitation bubbles were concentrated on the edge of the valve stop and along the leaflet tip. It was established that squeeze flow holds the key to MHV cavitation in our study. Cavitation intensity increased with an increase in the valve closing velocity and the valve stop area. With regard to squeeze flow, the bileaflet valve with slow valve-closing velocity and small valve stop areas is better able to prevent blood cell damage than the monoleaflet valves.

Assessment of Hemodynamic Properties of Trileaflet Polymer Heart Valve Manufactured By Vacuum Forming Process (진공성형을 이용한 삼엽식 고분자 심장판막의 제작과 혈류역학적 성능평가)

  • Kim, K.H.;Hwang, C.M.;Jeong, G.S.;Ahn, C.B.;Kim, B.S.;Lee, J.J.;Nam, K.W.;Sun, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.418-426
    • /
    • 2006
  • In the artificial heart application, productivity and hemodynamic properties of artificial heart valves are crucial in successiful application to long term in vivo trials. This paper is about manufacture and assessment of trileaflet polymer heart valves using vacuum forming process(VFP). The VFP has many advantages such as reduced fabrication time, reproducibility due to relatively easy and simple process for manufacturing. Prior to VFP of trileaflet polymer heart valves, polyurethane(Pellethane 2363 80AE, Dow Chemical) sheet was prepared by extrusion. The sheets were heated and formed to mold shape by vacuum pressure. The vacuum formed trileaflet polymer heart valves fabrication is composed of two step method, first, leaflet forming and second, conduit forming. This two-step forming process made the leaflet-conduit bonding stable with any organic solvents. Hydrodynamic properties and hemocompatibility of the vacuum formed trileaflet polymer heart valves was compared with sorin bicarbon bileaflet heart valve. The percent effective orifice area of vacuum formed trileaflet polymer heart valves was inferior to bileaflet heart valve, but the increase of plasma free hemoglobin level which reflect blood damage was superior in vacuum formed trileaflet polymer heart valves Vacuum formed trileaflet polymer heart valves has high productivity, and superior hemodynamic property than bileaflet heart valves. Low manufacturing cost and blood compatible trileaflet polymer heart valves shows the advantages of vacuum forming process, and these results give feasibility in in vivo animal trials in near future, and the clinical artificial heart development program.

Changes in the Prosthesis Types Used for Aortic Valve Replacement after the Introduction of Sutureless and Rapid Deployment Valves in Korea: A Nationwide Population-Based Cohort Study

  • Woo, Hyeok Sang;Hwang, Ho Young;Kim, Ho Jin;Kim, Joon Bum;Lee, Sak;Lim, Cheong;Chang, Byung-Cheul;Lee, Na Rae;Suh, Youshin;Choi, Jae Woong
    • Journal of Chest Surgery
    • /
    • v.54 no.5
    • /
    • pp.369-376
    • /
    • 2021
  • Background: Sutureless and rapid deployment valves for aortic valve replacement (AVR) were introduced in Korea in December 2016. This study evaluated changing trends in the prosthetic valves used for AVR in Korea after the introduction of sutureless and rapid deployment valves. Methods: From December 2016 to December 2018, 4,899 patients underwent AVR in Korea. After applying the exclusion criteria, 4,872 patients were analyzed to determine changes in the type of prosthetic valve used for AVR. The study period was divided into 5 groups corresponding to 5-month intervals. Results: The total number of AVR cases was 194.88±28.78 per month during the study period. Mechanical valves were used in approximately 27% to 33% of cases, and the proportion of mechanical valve use showed a tendency to decrease, with marginal significance overall (p=0.078) and significant decreases in patients less than 60 years of age and in men (p=0.013 and p=0.023, respectively). The use of sutureless valves increased from 13.4% to 25.8% of cases (p<0.001), especially in elderly patients (>70 years) and those requiring concomitant surgery. In a comparison between sutureless and rapid deployment valves, the use of Perceval S valves (a type of sutureless valve), gradually increased (p<0.001). Conclusion: After the introduction of sutureless and rapid deployment valves in Korea, the rate of use of these new valves remarkably increased, especially in elderly patients and those requiring concomitant surgery. Further studies should investigate the clinical outcomes of these new prostheses.