• 제목/요약/키워드: valve Timing

검색결과 187건 처리시간 0.025초

자동차용 인스트루먼트 패널의 사출압력 최소화를 위한 밸브 게이트 열림 시점 결정 (Determination of Valve Gate Open Timing for Minimizing Injection Pressure of an Automotive Instrument Panel)

  • 조성빈;박창현;표병기;최동훈
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.46-51
    • /
    • 2012
  • Injection pressure, an important factor in filling process, should be minimized to enhance injection molding quality. Injection pressure can be controlled by valve gate open timing. In this work, we decided the valve gate open timing to minimize the injection pressure. To solve this design problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding CAE tool, to PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration, and Design Optimization) tool using the file parsing method. In order to reduce computational cost, we performed an approximate optimization using meta-models that replaced expensive computer simulations. At first, we carried out DOE (Design of Experiments) using OLHD (Optimal Latin Hypercube Design) available in PIAnO. Then, we built Kriging models using the simulation results at the sampling points. Finally, we used micro GA (Genetic Algorithm) available in PIAnO. Using the proposed design approach, the injection pressure has been reduced by 13.7% compared to the initial one. This design result clearly shows the validity of the proposed design approach.

스파크점화 기관의 성능향상을 위한 회전형 흡배기장치의 개발에 관한 연구 (A Study on Development 9f Rotary Valve for Performance Enhancement in SI Engine)

  • 김치원;윤창식;김유식
    • 한국안전학회지
    • /
    • 제10권3호
    • /
    • pp.11-20
    • /
    • 1995
  • In recent years, the study on the high efficiency of the internal combustion engine has been mainly proceeding. In this study, we developed rotary valve to achieve the improvement of volumetric efficiency and to be simple construction. And then made a comparative analysis between rotary and poppet valve. In this experiment, rotary valve enlarged the flow area of valve port to minimize the resistance of the fluid flow and to flow smoothly in intake and exhaust process. Indeed, valve timing was controlled properly lest positive pressure in exhaust process should affect intake process. Motoring and firing experiments were using engine speed and air-fuel ratio as the principle parameter and the full opening of throttle valve and minimum spark advance for best torque (MBT) as engine operating variables.

  • PDF

A Equivalent Finite Element Model of Lamination for Design of Electromagnetic Engine Valve Actuator

  • Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.151-155
    • /
    • 2006
  • The electromagnetic engine valve actuator is a key technology to achieve variable valve timing in internal combustion engine and the steel core and clapper of the electromagnetic engine valve actuator are laminated to reduce the eddy current loss. To design and characterize the performance of the electromagnetic engine valve actuator, FE (finite element) analysis is the most effective way, but FE (finite element) 3-D modeling of real lamination needs very fine meshes resulting in countless meshes for modeling and numerous computations. In this paper, the equivalent FE 2-D model of electromagnetic engine valve actuator is introduced and FE analysis is performed using the equivalent FE 2-D model.

흡입 밸브 각도에 따른 엔진 부분부하 성능 특성 (Part Load Performance Characteristics according to Inlet Valve Angle)

  • 이정만;이재원;김형식;권순태;박찬준;엄인용
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2008년도 춘계학술 발표회
    • /
    • pp.161-166
    • /
    • 2008
  • 본 논문에서는 가솔린 기관에서 흡입 밸브 각도가 엔진의 부분부하 성능에 어떠한 영향을 미치는지를 혼합비 반응 특성을 통해 알아보았다. 흡입 밸브각이 작은 엔진이 흡입 밸브 각이 큰 엔진에 비해 배기가스 중 질소산화물 (BSNOx)의 양은 줄어들었고, 점화시기는 지각되었고, 제동연료소비율은 조금 개선되었다. 배기가스 중 질소산화물의 양이 줄고 점화시기가 지각 되었다는 것은 급속 연소가 일어났다고 판단할 수 있다. 시험 결과를 살펴보면 흡입 밸브각이 작아지면 기관의 연소 성능이 좋아지는 것으로 판단 될 수 있다.

  • PDF

A Case Study on the Failure of Intake and Exhaust Valves for Marine Diesel Engines

  • Kim Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.801-807
    • /
    • 2005
  • Any failure of intake and exhaust valves of marine diesel engine must be regarded as serious, and any steps which can be taken to prevent such failure are desirable. The purposes of this study is to investigate and to analyse the failure causes of intake and exhaust valves for marine diesel engine during sea trial after completion of overhauling. In this study, to analyse the failure causes, we have carried out on board inspection, fractography test and discussion based on the specimen and repairing report provided by the ship owner. From the results of above inspection, test and discussion, it has been considered reasonable to conclude that the causes of damaged valves of the ship are as follow ; 1) During operation, the stick or seizure of valve spindle occurred and hence the movement of exhaust valve spindle was to be resisted and subsequently the engine was to be operated under an unappropriated valve timing and the exhaust valve sustained the repeated loads exceeding the fatigue strength of valve material. 2) By the loads above described, the fatigue fracture was initiated at the structural noncontinuous part of exhaust valve spindle, and then the valve head was finally fractured and dropped in the cylinder. 3) The fractured exhaust valve head impacted the intake valve at various direction to be bent or damaged.

포트 마스킹이 엔진의 부분부하 성능에 미치는 영향: Part II - 배기 및 연비특성 (Effects of Port Masking on fart Load Performance: Part II - Emission and Fuel Economy)

  • 이원근;엄인용
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.23-29
    • /
    • 2001
  • This paper is the second of companion papers, which investigate port-masking effects on emission and fuel economy. Port-masking was applied to commercial SOHC 3-valve engine by inserting masking plates between manifold and port. To induce various conditions of stratification, six types of masking plates were applied. In this paper, main interest is focused on the influence of injection timing on emission and fuel economy. Various injection timing was applied to the six cases, under the stoichiometric and lean-limit air-fuel ratio. Under the stoichiometric condition, an explanation about the reason of the change in emission level due to injection timing change is given. It is observed that NOx emission under the LML condition varies significantly when the injection timing changes.

  • PDF

디젤엔진에서 Common-rail 시스템의 분사방법에 따른 기관성능 및 연소특성에 관한 실험적 연구 (Engine Performance and Combustion Characteristics on The Variation of Injection Characteristics in Diesel Engine with Common Rail System)

  • 백두성;오상기;한영출
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.52-57
    • /
    • 2003
  • Common rail injection system is flexible in injection timing, injection duration and pressure in engine. Many researches have reported on the merits in the application of common rail systems. This research investigated on characteristics and performance for single cylinder diesel engine with a common .ail injection system by varying major parameters such as injection timing, injection duration and common rail pressure. The injection timing and injection duration were controlled by electronic pulse generated. and common rail pressure were controlled by PCV driver. The 498cc single cylinder diesel engine was used in this experiment. All data for combustion pressure, injection timing and injection duration were recorded by Labview. Furthermore, this test was focused on how to optimize injection conditions.

ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

  • Lee, Seok-Y.;Huh, Kang-Y.;Kim, Y.M.;Lee, J.H.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.93-101
    • /
    • 2001
  • Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

  • PDF