• Title/Summary/Keyword: valuable metal

Search Result 195, Processing Time 0.027 seconds

Cloning and Biochemical Characterization of a Hyaluronate Lyase from Bacillus sp. CQMU-D

  • Lu Wang;Qianqian Liu;Xue Gong;Wenwen Jian;Yihong Cui;Qianying Jia;Jibei Zhang;Yi Zhang;Yanan Guo;He Lu;Zeng Tu
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.235-241
    • /
    • 2023
  • Hyaluronidase (HAase) can enhance drug diffusion and dissipate edema by degrading hyaluronic acid (HA) in the extracellular matrix into unsaturated HA oligosaccharides in mammalian tissues. Microorganisms are recognized as valuable sources of HAase. In this study, a new hyaluronate lyase (HAaseD) from Bacillus sp. CQMU-D was expressed in Escherichia coli BL21, purified, and characterized. The results showed that HAaseD belonged to the polysaccharide lyase (PL) 8 family and had a molecular weight of 123 kDa. HAaseD could degrade chondroitin sulfate (CS) -A, CS-B, CS-C, and HA, with the highest activity toward HA. The optimum temperature and pH value of HAaseD were 40℃ and 7.0, respectively. In addition, HAaseD retained stability in an alkaline environment and displayed higher activity with appropriate concentrations of metal ions. Moreover, HAaseD was an endolytic hyaluronate lyase that could degrade HA to produce unsaturated HA oligosaccharides. Together, our findings indicate that HAaseD from Bacillus sp. CQMU-D is a new hyaluronate lyase and with excellent potential for application in industrial production.

Simple and rapid colorimetric detection of African swine fever virus by loop-mediated isothermal amplification assay using a hydroxynaphthol blue metal indicator

  • Park, Ji-Hoon;Kim, Hye-Ryung;Chae, Ha-Kyung;Park, Jonghyun;Jeon, Bo-Young;Lyoo, Young S.;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • In this study, a simple loop-mediated isothermal amplification (LAMP) combined with visual detection method (vLAMP) assay was developed for the rapid and specific detection of African swine fever virus (ASFV), overcoming the shortcomings of previously described LAMP assays that require additional detection steps or pose a cross-contamination risk. The assay results can be directly detected by the naked eye using hydroxynaphthol blue after incubation for 40 min at 62℃. The assay specifically amplified ASFV DNA and no other viral nucleic acids. The limit of detection of the assay was <50 DNA copies/reaction, which was ten times more sensitive than conventional polymerase chain reaction (cPCR) and comparable to real-time PCR (qPCR). For clinical evaluation, the ASFV detection rate of vLAMP was higher than cPCR and comparable to OIE-recommended qPCR, showing 100% concordance, with a κ value (95% confidence interval) of 1 (1.00~1.00). Considering the advantages of high sensitivity and specificity, no possibility for cross-contamination, and being able to be used as low-cost equipment, the developed vLAMP assay will be a valuable tool for detecting ASFV from clinical samples, even in resource-limited laboratories.

Copper-Based Electrochemical CO2 Reduction and C2+ Products Generation: A Review (구리 기반 전극을 활용한 전기화학적 이산화탄소 환원 및 C2+ 화합물 생성 기술)

  • Jiwon Heo;Chaewon Seong;Vishal Burungale;Pratik Mane;Moo Sung Lee;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.17-31
    • /
    • 2023
  • Amidst escalating global warming fueled by indiscriminate fossil fuel consumption, concerted efforts are underway worldwide to mitigate atmospheric carbon dioxide (CO2) levels. Electrochemical CO2 reduction technology is recognized as a promising and environmentally friendly approach to convert CO2 into valuable hydrocarbon compounds, deemed essential for achieving carbon neutrality. Copper, among the various materials used as CO2 reduction electrodes, is known as the sole metal capable of generating C2+ compounds. However, low conversion efficiency and selectivity have hindered its widespread commercialization. This review highlights diverse research endeavors to address these challenges. It explores various studies focused on utilizing copper-based electrodes for CO2 reduction, offering insights into potential solutions for advancing this crucial technology.

A Review of Strategies to Improve the Stability of Carbon-supported PtNi Octahedral for Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells

  • In Gyeom Kim;Sung Jong Yoo;Jin Young Kim;Hyun S. Park;So Young Lee;Bora Seo;Kwan-Young Lee;Jong Hyun Jang;Hee-Young Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.96-110
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells (PEMFCs) are green energy conversion devices, for which commercial markets have been established, owing to their application in fuel cell vehicles (FCVs). Development of cathode electrocatalysts, replacing commercial Pt/C, plays a crucial role in factors such as cost reduction, high performance, and durability in FCVs. PtNi octahedral catalysts are promising for oxygen reduction reactions owing to their significantly higher mass activity (10-15 times) than that of Pt/C; however, their application in membrane electrode assemblies (MEAs) is challenged by their low stability. To overcome this durability issue, various approaches, such as third-metal doping, composition control, halide treatment, formation of a Pt layer, annealing treatment, and size control, have been explored and have shown promising improvements in stability in rotating disk electrode (RDE) testing. In this review, we aimed to compare the features of each strategy in terms of enhancing stability by introducing a stability improvement factor for a direct and reasonable comparison. The limitations of each strategy for enhancing stability of PtNi octahedral are also described. This review can serve as a valuable guide for the development of strategies to enhance the durability of octahedral PtNi.

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

Analytical Methods and Effects of Bioactive Peptides Derived from Animal Products: A Mini-Review

  • Jae Won Jeong;Seung Yun Lee;Da Young Lee;Jae Hyeon Kim;Seung Hyeon Yun;Juhyun Lee;Ermie Jr. Mariano;Sung Sil Moon;Sun Jin Hur
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.533-550
    • /
    • 2024
  • Peptides with bioactive effects are being researched for various purposes. However, there is a lack of overall research on pork-derived peptides. In this study, we reviewed the process of obtaining bioactive peptides, available analytical methods, and the study of bioactive peptides derived from pork. Pepsin and trypsin, two representative protein digestive enzymes in the body, are hydrolyzed by other cofactors to produce peptides. Bicinchoninic acid assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chromatography, and in vitro digestion simulation systems are utilized to analyze bioactive peptides for protein digestibility and molecular weight distribution. Pork-derived peptides mainly exhibit antioxidant and antihypertensive activities. The antioxidant activity of bioactive peptides increases the accessibility of amino acid residues by disrupting the three-dimensional structure of proteins, affecting free radical scavenging, reactive oxygen species inactivation, and metal ion chelating. In addition, the antihypertensive activity decreases angiotensin II production by inhibiting angiotensin converting enzyme and suppresses blood pressure by blocking the AT1 receptor. Pork-derived bioactive peptides, primarily obtained using papain and pepsin, exhibit significant antioxidant and antihypertensive activities, with most having low molecular weights below 1 kDa. This study may aid in the future development of bioactive peptides and serve as a valuable reference for pork-derived peptides.

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Manufacturing Techniques of a Backje Gilt-Bronze Cap from Bujang-ri Site in Seosan (서산 부장리 백제 금동관모의 제작기법 연구)

  • Chung, Kwang Yong;Lee, Su Hee;Kim, Gyongtaek
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.243-280
    • /
    • 2006
  • At the Bujang-ri Site, Seosan, South Chungcheong Province, around 220 archaeological features, including semi-subterranean houses and pits of Bronze Age and semi-subterranean houses, pits, and burials of Baekje period had been identified and investigated. In Particular, mound burials No. 5 of 13 of Baekje mound burials yielding a gilt-bronze cap along with other valuable artifacts drew international scholarly attention. The gilt-bronze cap from the mound burial No. 5 is a significant archaeological data not only in the study of Baekje archaeology but also in the study of international affairs and exchange at that time. At the time of exposure, the gilt-bronze cap was already broken into a number of pieces and seriously damaged by corrosion, and hardening and urethane foam were necessary in the process of collecting its pieces. Ahead of main conservational treatments on cap, X-ray photograph and CT(computerizes tomography) were taken in order to examine interior structure of the cap and to decide appropriate treatments. In the five layers identified in the profile of cap, a textile layer was set between a metal and a layerof bark of paper birch for avoiding direct contact of the metal and the bark of paper birch. Analyses were executed for examining textile layer and a layer of fibroid material. According to microscopic analysis, while the textile layer consisted of the simplest plain fabric with one fold among three kinds of textile structures, the layer of fibroid material was mixed with two or three kinds of fibers. A comparative analysis with standard sample using FT-IR (Fourier Transform Infrared Spectroscopy) announced that both textiles and fabrics were hemp. Analysis of kind of the paper birch resulted in barks of paper birch with 15 fold. A metallographic microscope, SEM, and WDS were used for the analysis of microscopic structures of plated metal pieces. While amalgam plating was treated as a plating method, the thickness of the plated layer, a barometer of plating technique, was ranged from $1.72{\mu}m$ to $8.67{\mu}m$. The degree of purity of gold (Au) used in plating was 98% in average, and less than 1% of silver (Ag) was included.

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.

Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations (양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구)

  • Lee, Ji Hyun;Hwang, Young Gi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • Although chemical sedimentation and ion exchange are usually applied to the treatment of heavy metal ions and radioactive cations, they have some serious disadvantages like a great consumption of chemicals, the disposal of valuable metals, and the secondary pollution of soil by the solid-waste. The advanced countries recently have studied the electrochemical ion exchange, combined electrochemical reduction and ion exchange, for the development of the alternative technique. This study has been performed to investigate the optimum condition for the preparation of the nickel hexacyanoferrate (NiHCNFe) which is an electrochemical ion exchanger. NiHCNFe film was deposited on the surface of nickel plate by chemical method or electrochemical method. The morphology and composition of NiHCNFe were observed by SEM and EDS, respectively. The peak current density of NiHCNFe was measured from the cyclic voltammograms of the continuous oxidation-reduction reaction in a parallel plane ion exchange electrode reactor. It was found that the chemical preparation method was better than the electrochemical method. The concentrated NiHCNFe was apparently deposited on nickel plate when dipping in the preparing solution for 118 h, especially. It also had a best durable performance as an ion exchange electrode.