• Title/Summary/Keyword: vacuum molding process

Search Result 83, Processing Time 0.033 seconds

All-Organic Nanowire Field-Effect Transistors and Complementary Inverters Fabricated by Direct Printing

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.632-632
    • /
    • 2013
  • We generated single-crystal organic nanowire arrays using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. The position of the nanowires on complex structures is easy to adjust, because the mold is movable on the substrates before the polar liquid layer, which acts as an adhesive lubricant, is dried. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with twoor three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Fabrication of Large-Scale Single-Crystal Organic Nanowire Arrays for High-Integrated Flexible Electronics

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.266.1-266.1
    • /
    • 2013
  • Large-scale single-crystal organic nanowire arrays were generated using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with two- or three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Single-Crystal Organic Semiconductor Nanowires as Building Blocks for Nanojunction Devices

  • Lee, Gi-Seok;Lee, Rin;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.261.1-261.1
    • /
    • 2013
  • Well-aligned nanowire arrays can be used as building blocks for nanoscale device. Recently, we reported that well-aligned single-crystal organic nanowires has been created by using a direct printing method which is named liquid-bridge mediated nanotransfer molding (LB-nTM). Moreover, multi-layering nanostructures can be fabricated by repeating this printing process. As a result, it is possible to make simple and basic concept of heterojunction devices such as crossed nanowire devices. We fabricated crossed single-crystal organic nanowires nanojunction devices from 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-PEN) and fullerene (C60) single-crystal nanowires using by direct printing method in solution process. Crossed TIPSPEN/ C60 single-crystal nanowires diode has rectifying behavior with on/off ratios of ~13. In addition, the device shows photodiode characteristics as well as rectification. Our study represent methodology of heterojunction devices using single-crystal nanowires, thereby provide a new direction of future nanoelectronics.

  • PDF

Effect of Fabrication Methods on Static Strength of Polymer Based Composites under the Low Temperature Range (적층 방법에 따른 복합재의 저온 영역 하에서 정적 강도 변화)

  • Eom, Su-Hyeon;Dutta, Piyush K.;Gwon, Sun-Cheol;Kim, Guk-Jin;Kim, Yun-Hae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.7-12
    • /
    • 2003
  • When the wind turbine is used in cold regions, the mechanical properties and dimension stability of the blade will be changed. The proposal of this paper is to test the durability of the blade for wind turbine. It is necessary to select the most comfortable materials and fabrication processes for more stable wind turbine blade in cold regions. To select the most comfortable materials and processes, the static strength has to know through the tensile static tests at the severe condition as cold regions. First, the tensile static specimens made by RIM (Resin injection molding) process & vacuum bagging process with reinforcement materials and resin. Tensile static tests were carried out on three laminate lay-ups (carbon prepreg, carbon fiber dry fabric and glass fiber dry fabric) at different test temperature($24^{\circ}$, $-30^{\circ}$), determining properties such as the mechanical strength, stiffness and strain to failure. At different test temperature, in order to test the tensile strengths of these specimens used the low temperature chamber. Next, the results of this test were compared with each other. Finally, the most comfortable materials and fabrication processes can select based on these results. The results show the changes in the static behavior of three laminate lay-ups at different test temperatures. At low temperatures, the static strengths are higher than the ones at room temperature.

  • PDF

A Comparison of the Effect of Fabrication Methods on Static Strength of Polymer Based Composites under the Low Temperature Range (적층 방법에 따른 고분자 기지 복합재의 저온 영역 하에서 정적 강도 변화의 비교)

  • ;;;Piyush K. Dutta
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.196-201
    • /
    • 2003
  • When the structures are used in cold regions, the mechanical properties and dimension stability of the blade will be changed. The proposal of this study is to test the durability of the structures in cold regions. It is necessary to select the most comfortable materials and fabrication processes for more stable structures in cold regions. To select the most comfortable materials and processes, the static strength has to know through the tensile static tests at the severe condition as cold regions. First, the tensile static specimens made by RIM (Resin injection molding) process & vacuum bagging process with reinforcement materials and resin. Tensile static tests were carried out on three laminate lay-ups (carbon prepreg, carbon fiber dry fabric) at different test temperature($24^{\circ}C$, $-30^{\circ}C$), determining properties such as the mechanical strength, stiffness and strain to failure. At different test temperature, in order to test the tensile strengths of these specimens used the low temperature chamber. Next, the results of this test were compared with each other. Finally, the most comfortable materials and fabrication processes can select based on these results. The results show the changes in the static behavior of three laminate lay-ups at different test temperatures. At low temperatures, the static strengths are higher than the ones at room temperature.

  • PDF

Mechanical Properties of the Laminated Glass Fiber-Reinforced Plastic Composites for Electromagnet Structure System (전자석 구조물용 적층 유리섬유강화 복합재료의 기계적 특성)

  • Park, Han Ju;Kim, Hak Kun;Song, Jun Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.589-595
    • /
    • 2011
  • Laminated glass fiber-reinforced plastic (GFRP) composites were applied to an insulating structure of a magnet system for a nuclear fusion device. Decreased inter-laminar strength by a strong repulsive force between coils which is induced a problem of structural integrity in laminated GFRPs. Therefore, it is important to investigate the inter-laminar characteristics of laminated GFRP composites in order to assure more reliable design and better structural integrity. Three types of the laminated GFRP composites using a high voltage insulating materials were fabricated according to each molding process. To evaluate the grade of the fabricated composites, mechanical tests, such as hardness, tensile and compressive tests,were carried out. The autoclave molding composites satisfied almost of the mechanical properties reguested at the G10 class standard, but the vacuum impregnation (VPI) and Prepreg composites did not.

Development and Analysis of the Autoclave Alternative Composite Material Molding Process Using a Pressure Device (가압장치를 이용한 오토클레이브 대체 복합재료 성형공정 개발 및 분석)

  • Kim, Jung-Soo;Kim, Byung-Ha;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.254-259
    • /
    • 2014
  • In this study, a device and pressure press process that is able to substitute autoclave process is developed. This process complements disadvantages of autoclave process which are long process-time and high production cost. The developed device provides air pressure as well as the vacuum which are greatest feature of autoclave process. The device is sealed using hydraulic pressure to keep the air pressure inside the mold. The transfer of the heat is designed to be direct. The heating and pressure charging time are decreased by reducing the interior space. Tooling cost is reduced dramatically compared to autoclave process. Spring-back phenomenon is measured and compared. The temperatures of several parts of the mold during molding are measured. The fiber volume fraction of the parts molded by autoclave process and by the developed process are compared.

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

Design and Manufacturing of Natural Composite Chemical Container Tank Using Resin Flow Simulation

  • Kim, Myungsub;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered-up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.